
Deductive Verification

Ondřej Lengál

SAV’24, FIT VUT v Brně

14 October 2024

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 1 / 68

Verified Programming

How to write software that is correct?

First approach
1 First, write the software.
2 Then, whack it with whatever you can find (verify & test it, burn it) until no bugs.

Second approach
▶ Verified Programming: programming + deductive verification

• i.e., writing codes with annotations

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 2 / 68

[from slides of Ernie Cohen]
Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 3 / 68

Deductive Verification

the system is accompanied by specification
these are converted into proof obligations (program invariant—a big formula)
the truth of proof obligations imply correctness of the system
▶ this is discharged by different methods:

• SMT solvers (Z3, STP, cvc5, . . .)
• automatic theorem provers (Vampire, Prover9, E, . . .)
• interactive theorem provers (Coq, Isabelle, Lean, . . .)

Pros:
▶ strong correctness guarantees (e.g., program correct “up to bugs in the solver”)
▶ modularity; can be quite general

Cons:
▶ quite manual ⇝ expensive, high user expertise needed
▶ garbage in, garbage out
▶ not always easy to get counterexamples
▶ not so strong tool support

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 4 / 68

A Bit of History . . .

1949: Alan Turing: Checking a Large Routine.
1969: Tony Hoare: An Axiomatic Basis for Computer Programming.
▶ a formal system for rigorous reasoning about programs
▶ Floyd-Hoare triples {pre} stmt {post}

• 1967: Robert Floyd: Assigning Meaning to Programs
1971: Tony Hoare: Proof of a Program: FIND
1976: E. Dijkstra: A Discipline of Programming.
▶ weakest-precondition calculus

2000: efficient tool support starts

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 5 / 68

Floyd-Hoare Logic

Let us consider the following imperative programming language:

Expression: E ::= n | x | E1 + E2 | E1 · E2 for n ∈ Z and x ∈ X (set of program variables)
Conditional: C ::= true | false | E1 = E2 | E1 ≤ E2 | E1 < E2
Statement:

S ::= x := E (assignment)
| S1;S2 (sequence)
| if C then S1 else S2 (if)
| while C do S (while)

A program is a statement.

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 6 / 68

Partial Correctness
Partial correctness of programs in Hoare logic is specified using Hoare triples:

{P} S {Q}

where

S is a statement of the programming language
P and Q are formulae in a suitable fragment of logic (usually first-order logic or SMT)
▶ P is called precondition
▶ Q is called postcondition

Meaning:

if S is executed from a state (program configuration) satisfying formula P
and the execution of S terminates,
then the program state after S terminates satisfies formula Q.

Example
1 Is {x = 0} x := x + 1 {x = 1} a valid Hoare triple?
2 {x = 0 ∧ y = 1} x := x + 1 {x = 1 ∧ y = 2}?

3 {x = 0} x := x + 1 {x = 1 ∨ y = 2}?
4 {x = 0} while true do x := 0 {x = 1}?

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 7 / 68

Partial Correctness
Partial correctness of programs in Hoare logic is specified using Hoare triples:

{P} S {Q}

where

S is a statement of the programming language
P and Q are formulae in a suitable fragment of logic (usually first-order logic or SMT)
▶ P is called precondition
▶ Q is called postcondition

Meaning:

if S is executed from a state (program configuration) satisfying formula P
and the execution of S terminates,
then the program state after S terminates satisfies formula Q.

Example
1 Is {x = 0} x := x + 1 {x = 1} a valid Hoare triple?

2 {x = 0 ∧ y = 1} x := x + 1 {x = 1 ∧ y = 2}?
3 {x = 0} x := x + 1 {x = 1 ∨ y = 2}?
4 {x = 0} while true do x := 0 {x = 1}?

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 7 / 68

Partial Correctness
Partial correctness of programs in Hoare logic is specified using Hoare triples:

{P} S {Q}

where

S is a statement of the programming language
P and Q are formulae in a suitable fragment of logic (usually first-order logic or SMT)
▶ P is called precondition
▶ Q is called postcondition

Meaning:

if S is executed from a state (program configuration) satisfying formula P
and the execution of S terminates,
then the program state after S terminates satisfies formula Q.

Example
1 Is {x = 0} x := x + 1 {x = 1} a valid Hoare triple?
2 {x = 0 ∧ y = 1} x := x + 1 {x = 1 ∧ y = 2}?

3 {x = 0} x := x + 1 {x = 1 ∨ y = 2}?
4 {x = 0} while true do x := 0 {x = 1}?

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 7 / 68

Partial Correctness
Partial correctness of programs in Hoare logic is specified using Hoare triples:

{P} S {Q}

where

S is a statement of the programming language
P and Q are formulae in a suitable fragment of logic (usually first-order logic or SMT)
▶ P is called precondition
▶ Q is called postcondition

Meaning:

if S is executed from a state (program configuration) satisfying formula P
and the execution of S terminates,
then the program state after S terminates satisfies formula Q.

Example
1 Is {x = 0} x := x + 1 {x = 1} a valid Hoare triple?
2 {x = 0 ∧ y = 1} x := x + 1 {x = 1 ∧ y = 2}?

3 {x = 0} x := x + 1 {x = 1 ∨ y = 2}?

4 {x = 0} while true do x := 0 {x = 1}?

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 7 / 68

Partial Correctness
Partial correctness of programs in Hoare logic is specified using Hoare triples:

{P} S {Q}

where

S is a statement of the programming language
P and Q are formulae in a suitable fragment of logic (usually first-order logic or SMT)
▶ P is called precondition
▶ Q is called postcondition

Meaning:

if S is executed from a state (program configuration) satisfying formula P
and the execution of S terminates,
then the program state after S terminates satisfies formula Q.

Example
1 Is {x = 0} x := x + 1 {x = 1} a valid Hoare triple?
2 {x = 0 ∧ y = 1} x := x + 1 {x = 1 ∧ y = 2}?

3 {x = 0} x := x + 1 {x = 1 ∨ y = 2}?
4 {x = 0} while true do x := 0 {x = 1}?

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 7 / 68

Total Correctness

{P} S {Q} does not require S to terminate (partial correctness).
Hoare triples for total correctness:

[P] S [Q]

Meaning:
▶ if S is executed from a state (program configuration) satisfying formula P ,
▶ then the execution of S terminates and
▶ the program state after S terminates satisfies formula Q.

Example
Is [x = 0] while true do x := 0 [x = 1] valid?

In the following we focus only on partial correctness.

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 8 / 68

Examples

Example
What are the meanings of the following Hoare triples?

1 {true} S {Q}

2 {P} S {true}
3 [P] S [true]
4 {true} S {false}
5 {false} S {Q}

Example
Are the following Hoare triples valid or invalid?

1 {i = 0 ∧ n ≥ 0} while i<n do i++ {i = n}
2 {i = 0 ∧ n ≥ 0} while i<n do i++ {i ≥ n}
3 {i = 0 ∧ j = 0 ∧ n ≥ 0} while i<n do {i++; j+=i} {2j = n(1 + n)}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 9 / 68

Examples

Example
What are the meanings of the following Hoare triples?

1 {true} S {Q}
2 {P} S {true}

3 [P] S [true]
4 {true} S {false}
5 {false} S {Q}

Example
Are the following Hoare triples valid or invalid?

1 {i = 0 ∧ n ≥ 0} while i<n do i++ {i = n}
2 {i = 0 ∧ n ≥ 0} while i<n do i++ {i ≥ n}
3 {i = 0 ∧ j = 0 ∧ n ≥ 0} while i<n do {i++; j+=i} {2j = n(1 + n)}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 9 / 68

Examples

Example
What are the meanings of the following Hoare triples?

1 {true} S {Q}
2 {P} S {true}
3 [P] S [true]

4 {true} S {false}
5 {false} S {Q}

Example
Are the following Hoare triples valid or invalid?

1 {i = 0 ∧ n ≥ 0} while i<n do i++ {i = n}
2 {i = 0 ∧ n ≥ 0} while i<n do i++ {i ≥ n}
3 {i = 0 ∧ j = 0 ∧ n ≥ 0} while i<n do {i++; j+=i} {2j = n(1 + n)}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 9 / 68

Examples

Example
What are the meanings of the following Hoare triples?

1 {true} S {Q}
2 {P} S {true}
3 [P] S [true]
4 {true} S {false}

5 {false} S {Q}

Example
Are the following Hoare triples valid or invalid?

1 {i = 0 ∧ n ≥ 0} while i<n do i++ {i = n}
2 {i = 0 ∧ n ≥ 0} while i<n do i++ {i ≥ n}
3 {i = 0 ∧ j = 0 ∧ n ≥ 0} while i<n do {i++; j+=i} {2j = n(1 + n)}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 9 / 68

Examples

Example
What are the meanings of the following Hoare triples?

1 {true} S {Q}
2 {P} S {true}
3 [P] S [true]
4 {true} S {false}
5 {false} S {Q}

Example
Are the following Hoare triples valid or invalid?

1 {i = 0 ∧ n ≥ 0} while i<n do i++ {i = n}
2 {i = 0 ∧ n ≥ 0} while i<n do i++ {i ≥ n}
3 {i = 0 ∧ j = 0 ∧ n ≥ 0} while i<n do {i++; j+=i} {2j = n(1 + n)}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 9 / 68

Examples

Example
What are the meanings of the following Hoare triples?

1 {true} S {Q}
2 {P} S {true}
3 [P] S [true]
4 {true} S {false}
5 {false} S {Q}

Example
Are the following Hoare triples valid or invalid?

1 {i = 0 ∧ n ≥ 0} while i<n do i++ {i = n}

2 {i = 0 ∧ n ≥ 0} while i<n do i++ {i ≥ n}
3 {i = 0 ∧ j = 0 ∧ n ≥ 0} while i<n do {i++; j+=i} {2j = n(1 + n)}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 9 / 68

Examples

Example
What are the meanings of the following Hoare triples?

1 {true} S {Q}
2 {P} S {true}
3 [P] S [true]
4 {true} S {false}
5 {false} S {Q}

Example
Are the following Hoare triples valid or invalid?

1 {i = 0 ∧ n ≥ 0} while i<n do i++ {i = n}
2 {i = 0 ∧ n ≥ 0} while i<n do i++ {i ≥ n}

3 {i = 0 ∧ j = 0 ∧ n ≥ 0} while i<n do {i++; j+=i} {2j = n(1 + n)}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 9 / 68

Examples

Example
What are the meanings of the following Hoare triples?

1 {true} S {Q}
2 {P} S {true}
3 [P] S [true]
4 {true} S {false}
5 {false} S {Q}

Example
Are the following Hoare triples valid or invalid?

1 {i = 0 ∧ n ≥ 0} while i<n do i++ {i = n}
2 {i = 0 ∧ n ≥ 0} while i<n do i++ {i ≥ n}
3 {i = 0 ∧ j = 0 ∧ n ≥ 0} while i<n do {i++; j+=i} {2j = n(1 + n)}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 9 / 68

Inference Rules

We write proof rules in Hoare logic as inference rules:

⊢ {P1} S1 {Q1} . . . ⊢ {Pn} Sn {Qn}
⊢ {P} S {Q}

Meaning:

If all Hoare triples {P1} S1 {Q1}, . . . , {Pn} Sn {Qn} are provable, then {P} S {Q} is also provable.

In general, inference rules have the format
premises

deductions
Name

. A rule with no premises is an axiom.

The proof system will have one rule for every statement of our language:

an axiom for atomic statements: assignments,
inference rules for composite statements: sequence, if, while
auxiliary “helper” rules

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 10 / 68

Proof Rule (Assignment)

For assignment x := E, we have the following proof rule:

⊢ {Q[E/x]} x := E {Q}
Assgn

where Q[E/x] denotes the formula obtained from Q by substituting all free occurrences of x by E

Example
Which of the following Hoare triples can we prove using this rule?

1 {y = 4} x := 4 {y = x}

2 {x = n− 1} x := x+1 {x = n}
3 {y = x} y := 2 {y = x}
4 {z = 3} y := x {z = 3}
5 {z = 3} y := x {x = y}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 11 / 68

Proof Rule (Assignment)

For assignment x := E, we have the following proof rule:

⊢ {Q[E/x]} x := E {Q}
Assgn

where Q[E/x] denotes the formula obtained from Q by substituting all free occurrences of x by E

Example
Which of the following Hoare triples can we prove using this rule?

1 {y = 4} x := 4 {y = x}
2 {x = n− 1} x := x+1 {x = n}

3 {y = x} y := 2 {y = x}
4 {z = 3} y := x {z = 3}
5 {z = 3} y := x {x = y}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 11 / 68

Proof Rule (Assignment)

For assignment x := E, we have the following proof rule:

⊢ {Q[E/x]} x := E {Q}
Assgn

where Q[E/x] denotes the formula obtained from Q by substituting all free occurrences of x by E

Example
Which of the following Hoare triples can we prove using this rule?

1 {y = 4} x := 4 {y = x}
2 {x = n− 1} x := x+1 {x = n}
3 {y = x} y := 2 {y = x}

4 {z = 3} y := x {z = 3}
5 {z = 3} y := x {x = y}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 11 / 68

Proof Rule (Assignment)

For assignment x := E, we have the following proof rule:

⊢ {Q[E/x]} x := E {Q}
Assgn

where Q[E/x] denotes the formula obtained from Q by substituting all free occurrences of x by E

Example
Which of the following Hoare triples can we prove using this rule?

1 {y = 4} x := 4 {y = x}
2 {x = n− 1} x := x+1 {x = n}
3 {y = x} y := 2 {y = x}
4 {z = 3} y := x {z = 3}

5 {z = 3} y := x {x = y}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 11 / 68

Proof Rule (Assignment)

For assignment x := E, we have the following proof rule:

⊢ {Q[E/x]} x := E {Q}
Assgn

where Q[E/x] denotes the formula obtained from Q by substituting all free occurrences of x by E

Example
Which of the following Hoare triples can we prove using this rule?

1 {y = 4} x := 4 {y = x}
2 {x = n− 1} x := x+1 {x = n}
3 {y = x} y := 2 {y = x}
4 {z = 3} y := x {z = 3}
5 {z = 3} y := x {x = y}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 11 / 68

Strengthening/Weakening
Strengthening/weakening might be necessary in order to be able to apply some rules

Precondition Strengthening

⊢ {P ′} S {Q} P ⇒ P ′

⊢ {P} S {Q}
Strength

Precondition can be always tightened to something
stronger.

Postcondition Weakening

⊢ {P} S {Q′} Q′ ⇒ Q

⊢ {P} S {Q}
Weak

Postcondition can be always relaxed to something
weaker.

Conclusion (generalisation of the two above rules)

P ⇒ P ′ ⊢ {P ′} S {Q′} Q′ ⇒ Q

⊢ {P} S {Q}
Concl

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 12 / 68

Strengthening/Weakening (contd.)
Example
We can now prove the following: {z = 3} y := x {x = y}

⊢ {(x = y)[x/y]} y := x {x = y}
Assgn

⊢ {true} y := x {x = y} z = 3 ⇒ true

⊢ {z = 3} y := x {x = y}
Strength

Example
Assume ⊢ {true} S {x = y ∧ z = 2}. Which of the following can we prove from it?

1 {true} S {x = y}
2 {true} S {z = 2}
3 {true} S {z > 0}
4 {true} S {∀u(x = u)}
5 {true} S {∃u(x = u)}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 13 / 68

Strengthening/Weakening (contd.)
Example
We can now prove the following: {z = 3} y := x {x = y}

⊢ {(x = y)[x/y]} y := x {x = y}
Assgn

⊢ {true} y := x {x = y} z = 3 ⇒ true

⊢ {z = 3} y := x {x = y}
Strength

Example
Assume ⊢ {true} S {x = y ∧ z = 2}. Which of the following can we prove from it?

1 {true} S {x = y}
2 {true} S {z = 2}
3 {true} S {z > 0}
4 {true} S {∀u(x = u)}
5 {true} S {∃u(x = u)}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 13 / 68

Strengthening/Weakening (contd.)
Example
We can now prove the following: {z = 3} y := x {x = y}

⊢ {(x = y)[x/y]} y := x {x = y}
Assgn

⊢ {true} y := x {x = y} z = 3 ⇒ true

⊢ {z = 3} y := x {x = y}
Strength

Example
Assume ⊢ {true} S {x = y ∧ z = 2}. Which of the following can we prove from it?

1 {true} S {x = y}

2 {true} S {z = 2}
3 {true} S {z > 0}
4 {true} S {∀u(x = u)}
5 {true} S {∃u(x = u)}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 13 / 68

Strengthening/Weakening (contd.)
Example
We can now prove the following: {z = 3} y := x {x = y}

⊢ {(x = y)[x/y]} y := x {x = y}
Assgn

⊢ {true} y := x {x = y} z = 3 ⇒ true

⊢ {z = 3} y := x {x = y}
Strength

Example
Assume ⊢ {true} S {x = y ∧ z = 2}. Which of the following can we prove from it?

1 {true} S {x = y}
2 {true} S {z = 2}

3 {true} S {z > 0}
4 {true} S {∀u(x = u)}
5 {true} S {∃u(x = u)}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 13 / 68

Strengthening/Weakening (contd.)
Example
We can now prove the following: {z = 3} y := x {x = y}

⊢ {(x = y)[x/y]} y := x {x = y}
Assgn

⊢ {true} y := x {x = y} z = 3 ⇒ true

⊢ {z = 3} y := x {x = y}
Strength

Example
Assume ⊢ {true} S {x = y ∧ z = 2}. Which of the following can we prove from it?

1 {true} S {x = y}
2 {true} S {z = 2}
3 {true} S {z > 0}

4 {true} S {∀u(x = u)}
5 {true} S {∃u(x = u)}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 13 / 68

Strengthening/Weakening (contd.)
Example
We can now prove the following: {z = 3} y := x {x = y}

⊢ {(x = y)[x/y]} y := x {x = y}
Assgn

⊢ {true} y := x {x = y} z = 3 ⇒ true

⊢ {z = 3} y := x {x = y}
Strength

Example
Assume ⊢ {true} S {x = y ∧ z = 2}. Which of the following can we prove from it?

1 {true} S {x = y}
2 {true} S {z = 2}
3 {true} S {z > 0}
4 {true} S {∀u(x = u)}

5 {true} S {∃u(x = u)}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 13 / 68

Strengthening/Weakening (contd.)
Example
We can now prove the following: {z = 3} y := x {x = y}

⊢ {(x = y)[x/y]} y := x {x = y}
Assgn

⊢ {true} y := x {x = y} z = 3 ⇒ true

⊢ {z = 3} y := x {x = y}
Strength

Example
Assume ⊢ {true} S {x = y ∧ z = 2}. Which of the following can we prove from it?

1 {true} S {x = y}
2 {true} S {z = 2}
3 {true} S {z > 0}
4 {true} S {∀u(x = u)}
5 {true} S {∃u(x = u)}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 13 / 68

Proof Rule (Sequence)

For a sequence of two statements S1;S2, we have the following proof rule:

⊢ {P} S1 {R} ⊢ {R} S2 {Q}
⊢ {P} S1;S2 {Q}

Seq

Often, we need to find an appropriate R.

Example
Prove the correctness of {true} x := 2; y := x {x = 2 ∧ y = 2}:

⊢ {true} x := 2 {x = 2}
Assgn

⊢ {x = 2} y := x {x = 2 ∧ y = 2}
Assgn

⊢ {true} x := 2; y := x {x = 2 ∧ y = 2}
Seq

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 14 / 68

Proof Rule (Sequence)

For a sequence of two statements S1;S2, we have the following proof rule:

⊢ {P} S1 {R} ⊢ {R} S2 {Q}
⊢ {P} S1;S2 {Q}

Seq

Often, we need to find an appropriate R.

Example
Prove the correctness of {true} x := 2; y := x {x = 2 ∧ y = 2}:

⊢ {true} x := 2 {x = 2}
Assgn

⊢ {x = 2} y := x {x = 2 ∧ y = 2}
Assgn

⊢ {true} x := 2; y := x {x = 2 ∧ y = 2}
Seq

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 14 / 68

Proof Rule (If)

For if C then S1 else S2 we have the following proof rule:

⊢ {P ∧ C} S1 {Q} ⊢ {P ∧ ¬C} S2 {Q}
⊢ {P} if C then S1 else S2 {Q}

If

Example
Prove the correctness of {true} if x > 0 then y := x else y := -x {y ≥ 0}.

⊢ {x ≥ 0} y := x {y ≥ 0}
Assgn

⊢ {x > 0} y := x {y ≥ 0}
Strength

⊢ {−x ≥ 0} y := -x {y ≥ 0}
Assgn

⊢ {x ≤ 0} y := -x {y ≥ 0}
⊢ {true} if x > 0 then y := x else y := -x {y ≥ 0}

If

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 15 / 68

Proof Rule (If)

For if C then S1 else S2 we have the following proof rule:

⊢ {P ∧ C} S1 {Q} ⊢ {P ∧ ¬C} S2 {Q}
⊢ {P} if C then S1 else S2 {Q}

If

Example
Prove the correctness of {true} if x > 0 then y := x else y := -x {y ≥ 0}.

⊢ {x ≥ 0} y := x {y ≥ 0}
Assgn

⊢ {x > 0} y := x {y ≥ 0}
Strength

⊢ {−x ≥ 0} y := -x {y ≥ 0}
Assgn

⊢ {x ≤ 0} y := -x {y ≥ 0}
⊢ {true} if x > 0 then y := x else y := -x {y ≥ 0}

If

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 15 / 68

Proof Rule (While)
Consider the following code:

i := 0; j := 0; n := 10;
while i < n do {

i := i + 1;
j := i + j;

}

Which of the following formulae are loop invariants?

i ≤ n i < n j ≥ 0

For while C do S we have the following proof rule:

⊢ {P ∧ C} S {P}
⊢ {P} while C do S {P ∧ ¬C}

While

“If P is a loop invariant, then P ∧ ¬C must hold after the loop terminates.”

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 16 / 68

Proof Rule (While)
Consider the following code:

i := 0; j := 0; n := 10;
while i < n do {

i := i + 1;
j := i + j;

}

Which of the following formulae are loop invariants?

i ≤ n i < n j ≥ 0

For while C do S we have the following proof rule:

⊢ {P ∧ C} S {P}
⊢ {P} while C do S {P ∧ ¬C}

While

“If P is a loop invariant, then P ∧ ¬C must hold after the loop terminates.”
Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 16 / 68

Proof Rule (While)

Example
Prove the correctness of {x ≤ n} while x < n do x := x+1 {x ≥ n}.

⊢ {x+ 1 ≤ n} x := x+1 {x ≤ n}
Assgn

⊢ {x < n} x := x+1 {x ≤ n}
Strength

⊢ {x ≤ n ∧ x < n} x := x+1 {x ≤ n}
Strength

⊢ {x ≤ n} while x < n do x := x+1 {x ≤ n ∧ ¬(x < n)}
While

x ≤ n ∧ ¬(x < n) ⇒ x ≥ n

⊢ {x ≤ n} while x < n do x := x+1 {x ≥ n}
Weak

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 17 / 68

Proof Rule (While)

Example
Prove the correctness of {x ≤ n} while x < n do x := x+1 {x ≥ n}.

⊢ {x+ 1 ≤ n} x := x+1 {x ≤ n}
Assgn

⊢ {x < n} x := x+1 {x ≤ n}
Strength

⊢ {x ≤ n ∧ x < n} x := x+1 {x ≤ n}
Strength

⊢ {x ≤ n} while x < n do x := x+1 {x ≤ n ∧ ¬(x < n)}
While

x ≤ n ∧ ¬(x < n) ⇒ x ≥ n

⊢ {x ≤ n} while x < n do x := x+1 {x ≥ n}
Weak

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 17 / 68

Exercise

Prove partial correctness of the program below

/* { y = 12 } */
x := y;
while (x < 30) {

x := x * 2;
x := x - 2;

}
/* { x = 42 } */

Hint: a suitable candidate for the loop invariant might be the formula
(∃n ∈ N : x = 2n(y − 2) + 2) ∧ (x ≤ 42).

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 18 / 68

How does it work in practice?

In the following, we will be using VCC (A Verifier for Concurrent C):

available at https://github.com/microsoft/vcc
can run as a MS Visual Studio plugin (needs older VS)
currently somewhat orphaned and not industrial-strong
but used to verify MS Hyper-V hypervisor
▶ 60 KLOC of operating system-level concurrent C and x64 assembly code

interactive web interface: https://rise4fun.com/Vcc
other systems exist (Frama-C, OpenJML, KeY, . . .)

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 19 / 68

https://github.com/microsoft/vcc
https://rise4fun.com/Vcc

Example 1

Let’s start with something simple

#include <vcc.h>

unsigned add(unsigned x, unsigned y)
{

unsigned w = x + y;
return w;

}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 20 / 68

Example 1

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 21 / 68

Example 1

Fix attempt #1:

#include <vcc.h>

unsigned add(unsigned x, unsigned y)
_(requires x + y <= UINT_MAX) // <-- added precondition

{
unsigned w = x + y;
return w;

}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 22 / 68

Example 1

verifies, but what?

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 23 / 68

Example 1

verifies, but what?

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 23 / 68

Example 1

Fix attempt #2:

#include <vcc.h>

unsigned add(unsigned x, unsigned y)
_(requires x + y <= UINT_MAX)
_(ensures \result == x + y) // <-- added postcondition

{
unsigned w = x + y;
return w;

}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 24 / 68

Example 1

verifies wrt the specification \o/

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 25 / 68

Example 1 — post mortem

What did we do?

1 First, we tried to verify a code with no annotations
▶ VCC has a set of default correctness properties

• e.g. no NULL pointer dereference, (over/under)-flows, 0-division, . . .
▶ one property was violated

2 We fixed the violation using a _(requires φ) annotation
▶ precondition: formula φ holds on entry to to the function (extended C syntax)

3 We provided an _(ensures ψ) annotation to define what we expect as a result
▶ postcondition: formula ψ holds on return from the function (\result is the output)

preconditions + postconditions = function contract

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 26 / 68

Example 1 — post mortem

What happened behind the scenes?
the function and its specification were converted into
a formula of the form

(pre ∧ φP) → (post ∧ safeP)

▶ pre is the precondition
▶ post is the postcondition
▶ φP is a formula representing the function
▶ safeP represents implicit safety conditions on P

• no overflows, no out-of-bounds array accesses, . . .(
x0+y0 ≤ UINT_MAX ∧ w1 = x0+y0 ∧ res = w1

)
→

(
res = x0+y0 ∧ x0+y0 ≤ UINT_MAX

)
▶ the formula is tested for validity with an SMT solver

(Z3) that supports the theories

#include <vcc.h>

unsigned add(unsigned x, unsigned y)
_(requires x + y <= UINT_MAX)
_(ensures \result == x + y)

{
unsigned w = x + y;
return w;

}

–>

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 27 / 68

Example 2
Suppose we don’t believe our compiler’s implementation of “+”: let’s write our own!

#include <vcc.h>

unsigned add(unsigned x, unsigned y)
_(requires x + y <= UINT_MAX)
_(ensures \result == x + y)

{
unsigned i = x; // ORIGINAL CODE:
unsigned j = y; // unsigned w = x + y;

// return w;
while (i > 0)
{

--i;
++j;

}

return j;
}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 28 / 68

Example 2

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 29 / 68

Example 2

doesn’t verify, but the violation ++j might overflow. is spurious. How to get rid of it?

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 30 / 68

Example 2

doesn’t verify, but the violation ++j might overflow. is spurious. How to get rid of it?
Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 30 / 68

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 31 / 68

Example 2
Fix #1:

unsigned add(unsigned x, unsigned y)
_(requires x + y <= UINT_MAX)
_(ensures \result == x + y)

{
unsigned i = x; // ORIGINAL CODE:
unsigned j = y; // unsigned w = x + y;

// return w;
while (i > 0)

_(invariant i + j == x + y) // <-- added invariant
{

--i;
++j;

}

return j;
}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 32 / 68

Example 2

verifies wrt the specification \o/
Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 33 / 68

Example 2 — post mortem

What did we do?

1 We substituted implementation of a function with a different one
▶ the contract is still the same

2 The new implementation cannot be verified as is
▶ unbounded loops cannot be easily transformed into a static formula

3 We needed to provide a loop invariant: _(invariant I) where I is a formula s.t.
▶ I holds every time the loop head is reached (before evaluating the loop test)

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 34 / 68

Example 2 — post mortem
while (C)
_(invariant I)

{
// Body

}

We can then substitute the loop by

_(assert I)
_(assume I && !C)

but we also need to check validity of the formula

(I ∧ φB) → (I ∧ safeB)

φB is a formula representing the loop body
safeB represents implicit safety conditions on the loop body

–>

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 35 / 68

Example 3

unsigned lsearch(int elt, int *ar, unsigned sz)
_(ensures \result != UINT_MAX ==> ar[\result] == elt)
_(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)

{
unsigned i;
for (i = 0; i < sz; i = 1)
{

if (ar[i] == elt) return i;
}

return UINT_MAX;
}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 36 / 68

Example 3

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 37 / 68

Example 3

Fix #1:

unsigned lsearch(int elt, int *ar, unsigned sz)
_(requires \thread_local_array(ar, sz)) // <-- added precondition
_(ensures \result != UINT_MAX ==> ar[\result] == elt)
_(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)

{
unsigned i;
for (i = 0; i < sz; i = 1)
{

if (ar[i] == elt) return i;
}

return UINT_MAX;
}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 38 / 68

Example 3

still doesn’t verify

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 39 / 68

Example 3

still doesn’t verify
Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 39 / 68

Example 3

Fix #2: Let’s provide a loop invariant!

unsigned lsearch(int elt, int *ar, unsigned sz)
_(requires \thread_local_array(ar, sz))
_(ensures \result != UINT_MAX ==> ar[\result] == elt)
_(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)

{
unsigned i;
for (i = 0; i < sz; i = 1)

_(invariant \forall unsigned j; j < i ==> ar[j] != elt) // <-- added invariant
{

if (ar[i] == elt) return i;
}

return UINT_MAX;
}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 40 / 68

Example 3

Verifies! Great!!!! . . . or is it?

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 41 / 68

Example 3

Verifies! Great!!!! . . . or is it?
Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 41 / 68

Example 3
Fix #3: provide a termination requirement

unsigned lsearch(int elt, int *ar, unsigned sz)
_(requires \thread_local_array(ar, sz))
_(ensures \result != UINT_MAX ==> ar[\result] == elt)
_(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
_(decreases 0) // <-- added termination requirement

{
unsigned i;
for (i = 0; i < sz; i = 1)

_(invariant \forall unsigned j; j < i ==> ar[j] != elt)
{

if (ar[i] == elt) return i;
}

return UINT_MAX;
}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 42 / 68

Example 3

Ooops: the loop fails to decrease termination measure.
Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 43 / 68

Example 3
Fix #4: fix the code

unsigned lsearch(int elt, int *ar, unsigned sz)
_(requires \thread_local_array(ar, sz))
_(ensures \result != UINT_MAX ==> ar[\result] == elt)
_(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
_(decreases 0)

{
unsigned i;
for (i = 0; i < sz; i += 1) // <-- code fix

_(invariant \forall unsigned j; j < i ==> ar[j] != elt)
{

if (ar[i] == elt) return i;
}

return UINT_MAX;
}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 44 / 68

Example 3

Verifies!
Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 45 / 68

Example 3 — post mortem
What did we do?

our annotations got more complex:

unsigned lsearch(int elt, int *ar, unsigned sz)
_(requires \thread_local_array(ar, sz))
_(ensures \result != UINT_MAX ==> ar[\result] == elt)
_(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
_(decreases 0)

==>, <==: implication, <==>: equivalence, \forall: ∀, \exists: ∃ — quantifiers (typed)

thread_local_array(ar, sz): ar points to (at least) sz items of the type of *a, which are
“owned” by this thread

_(decreases 0): simply states that lsearch terminates
▶ for more complex code, termination measure needs to be provided on loops
▶ the measure should decrease in every iteration of the loop
▶ for recursive procedures, termination measure should decrease in every call

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 46 / 68

Example 3 — post mortem

partial correctness: every answer returned by a program is correct
total correctness: above + the algorithm also terminates

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 47 / 68

Example 4
unsigned bsearch(int elt, int *ar, unsigned sz)

_(requires \thread_local_array(ar, sz))
_(ensures \result != UINT_MAX ==> ar[\result] == elt)
_(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
_(decreases 0)

{
if (sz == 0) return UINT_MAX;
unsigned left = 0;
unsigned right = sz - 1;

while (left < right) {
unsigned mid = (left + right) / 2;
if (ar[mid] < elt) {

left = mid + 1;
} else if (ar[mid] > elt) {

right = mid - 1;
} else {

return mid;
}

}

return UINT_MAX;
}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 48 / 68

Example 4

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 49 / 68

Example 5

unsigned add(unsigned x, unsigned y)
_(ensures \result == x + y);

unsigned super_add(unsigned x, unsigned y, unsigned z)
_(ensures \result == x + y + z)

{
unsigned w = add(x, y);
w = add(w, z);
return w;

}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 50 / 68

Example 5

Verifies!

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 51 / 68

Example 5
How about when we add an implementation of add?

unsigned add(unsigned x, unsigned y)
_(ensures \result == x + y);

unsigned super_add(unsigned x, unsigned y, unsigned z)
_(ensures \result == x + y + z)

{
unsigned w = add(x, y);
w = add(w, z);
return w;

}

unsigned add(unsigned x, unsigned y) // <-- added implementation
{

return x + y;
}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 52 / 68

Example 5

Ouch!

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 53 / 68

Example 5

Ouch!

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 53 / 68

Example 5

unsigned add(unsigned x, unsigned y)
_(requires x + y <= UINT_MAX) // <-- added precondition
_(ensures \result == x + y);

unsigned super_add(unsigned x, unsigned y, unsigned z)
_(ensures \result == x + y + z)

{
unsigned w = add(x, y);
w = add(w, z);
return w;

}

unsigned add(unsigned x, unsigned y)
{

return x + y;
}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 54 / 68

Example 5

Not enough. . .

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 55 / 68

Example 5

Not enough. . .
Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 55 / 68

Example 5
unsigned add(unsigned x, unsigned y)

_(requires x + y <= UINT_MAX)
_(ensures \result == x + y);

unsigned super_add(unsigned x, unsigned y, unsigned z)
_(requires x + y + z <= UINT_MAX) // <-- added precondition
_(ensures \result == x + y + z)

{
unsigned w = add(x, y);
w = add(w, z);
return w;

}

unsigned add(unsigned x, unsigned y)
{

return x + y;
}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 56 / 68

Example 5

Verifies!

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 57 / 68

Example 5

Verifies!
Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 57 / 68

Example 5 — post mortem
What happened?

super_add was using add in its body
during verification of super_add, the call to add was
substituted by its contract:
_(assert add_requires) // precondition
_(assume add_ensures) // postcondition
validity of all asserts and super_add’s postcondition needed to
be checked:

1 for add(x, y):

(x+ y + z ≤ UINT_MAX) → (x+ y ≤ UINT_MAX)

2 for add(w, z):

(x+y+z ≤ UINT_MAX ∧ w1 = x+y) → (w1+z ≤ UINT_MAX)

3 super_add’s postcondition:

(x+y+z ≤ UINT_MAX ∧ w1 = x+y ∧ w2 = w1+z) → (w2 = x+y+z)

unsigned add(unsigned x, unsigned y)
_(requires x + y <= UINT_MAX)
_(ensures \result == x + y);

unsigned super_add(unsigned x, unsigned y, unsigned z)
_(requires x + y + z <= UINT_MAX)
_(ensures \result == x + y + z)

{
unsigned w = add(x, y);
w = add(w, z);
return w;

}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 58 / 68

Example 6

void swap(int* x, int* y)
_(ensures *x == \old(*y) && *y == \old(*x))

{
int z = *x;
*x = *y;
*y = z;

}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 59 / 68

Example 6

side effect

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 60 / 68

Example 6

side effect
Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 60 / 68

Example 6

void swap(int* x, int* y)
_(writes x)
_(writes y)
_(ensures *x == \old(*y) && *y == \old(*x))

{
int z = *x;
*x = *y;
*y = z;

}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 61 / 68

Example 6

_(writes x) talks about a side-effect

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 62 / 68

Example 6

_(writes x) talks about a side-effect
Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 62 / 68

Example 7
#define RADIX ((unsigned)(-1) + ((\natural)1))
#define LUINT_MAX ((unsigned)(-1) + (unsigned)(-1) * ((unsigned)(-1) + ((\natural)1)))
typedef struct LongUint {

_(ghost \natural val)
unsigned low, high;
_(invariant val == low + high * RADIX) // coupling invariant

} LongUint;

void luint_inc(LongUint* x)
_(maintains \wrapped(x))
_(writes x)
_(requires x->val + 1 < LUINT_MAX)
_(ensures x->val == \old(x->val) + 1)

{
_(unwrapping x) {

if (x->low == UINT_MAX) {
++(x->high);
x->low = 0;

} else {
++(x->low);

}
_(ghost x->val = x->val + 1)

}
}

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 63 / 68

Example 7

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 64 / 68

Example 7 — post mortem

What did we do?

we needed to provide a data structure invariant via _(invariant Inv)
▶ it describes what need to hold about the data structure in a consistent state
▶ the invariant talks about a ghost variable

• helps with verification but is not part of the compiled program
• can have an “ideal” type (e.g., \natural, \integer, . . .)
• or can also be an inductive (functional-style) data type, e.g.

_(datatype List { case nil(); case cons(int v, List l); })
▶ we needed to use _(unwrapping x) { ... } for the block of code where the invariant is temporarily

broken

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 65 / 68

Further issues

concurrency (atomic actions, shared state)
hardware
assembly code (need to model instructions using function contract)
talking about memory (possible aliasings)

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 66 / 68

Other Tools

Dafny: a full programming language with support for specifications
Why3: a programming language (WhyML) + specifications
Frama-C (Jessie plug-in): deductive verification of C + ACSL annotations
KeY: Java + JML annotations
Prusti: Rust
IVy: specification and implementation of protocols
Ada, Eiffel, . . . : programming languages with in-built support for specifications

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 67 / 68

Used materials from

Ernie Cohen, Amazon (former Microsoft)
Işıl Dillig, University of Texas, Austin

Ondřej Lengál (SAV’24, FIT VUT v Brně) Deductive Verification 14 October 2024 68 / 68

