
Static Analysis and Verification
SAV 2024/2025

Ondřej Lengál, Tomáš Vojnar
{lengal,vojnar}@fit.vutbr.cz

Brno University of Technology
Faculty of Information Technology

Božetěchova 2, 612 66 Brno

Abstract Interpretation

Introduction

• Compared to model checking in which the stress is put on a systematic execution of
a system being verified (or its model), the emphasis in static analysis is on minimizing
the amount of execution of the code.

It is either not executed at all (the case of looking for bug patterns) or
just on some abstract level, typically with an in advance fixed abstraction
(data flow analysis, abstract interpretation, . . .).

• However, the borderline between model checking and static analysis is not sharp
(especially when considering abstract interpretation and model checking based on
predicate abstraction).

• Many static analyses are such that they can be applied to parts of code without the
need to describe their environment.

• Static analysis approaches: bug pattern searching, type analysis, data flow analysis,
. . . , abstract interpretation, (and sometimes even model checking).

3/38

Static Analyses

• Efficiency (effectiveness) of an analysis often crucially depends on the abstraction used.

• An analysis successful for one class of programs/properties to be checked may (and is
very likely to) fail for a different one: too much imprecision, inefficiency, divergence.

• Analyses are tailored for specific classes of programs and their properties of interest.

• This implies a need to prove soundness (completeness) of each analysis.

4/38

Abstract Interpretation

• Introduced by Patrick and Radhia Cousot at POPL’77.

• A general framework for static analyses.

• Particular analyses are created by providing specific components (abstract domain,
abstract transformers, . . .) to the framework.

• Abstract interpretation assigns a program an abstract semantics over an
abstract domain and analyses this abstract semantics (cf. predicate abstraction).

• When certain properties of the components are met (wrt. the concrete semantics), the
analysis is guaranteed to be sound.

5/38

Ingredients of Abstract Interpretation

• Abstract domain

• a set of abstract contexts,
• an abstract context represents a set of program states (typically used to

represent a set of program states reachable at some program location).

• Abstract transformers

• for each program operation there is a corresponding transformer that represents
the effect of the operation performed on an abstract context.

• Join operator

• combines abstract contexts from several branches into a single one.

• Widening

• performed on a sequence of abstract contexts appearing at a given location to
accelerate obtaining a fixpoint.

• Narrowing

• may be used to refine the result of widening.

• (Product operators, e.g., reduced product: combining abstract domains.)

6/38

Abstract Interpretation — formally

• Abstract interpretation I of a program P with the instruction set Instr is a tuple

I = (Q,⊔,⊑,⊤,⊥, τ)

where

• Q is the abstract domain (domain of abstract contexts),
• ⊔ : Q × Q → Q is the join operator for accumulation of abstract contexts,
• ⊑ ⊆ Q × Q is an ordering defined as x ⊑ y ⇐⇒ x ⊔ y = y where

(Q,⊑) is a complete lattice,

• ⊤ ∈ Q is the supremum of (Q,⊑),
• ⊥ ∈ Q is the (single) infimum of (Q,⊑),
• τ : Instr× Q → Q defines the

abstract transformers for particular instructions,
required to be monotone on Q for each instruction from Instr.

• The soundness of abstract interpretation may be guaranteed using Galois connections.

7/38

Galois Connections

• Galois connection is a quadruple π = (P, α, γ,Q) such that:

• P = ⟨P,≤⟩ and Q = ⟨Q,⊑⟩ are partially ordered sets (posets),
• α : P → Q and γ : Q → P are functions such that ∀p ∈ P and ∀q ∈ Q :

p ≤ γ(q) ⇐⇒ α(p) ⊑ q

• In abstract interpretation, Q is the abstract domain and P a (more) concrete domain –
elements of both domains, called abstract/concrete contexts, represent sets of states:

concrete contexts such as: abstract contexts such as:

P Q

α

γ

concrete domain abstract domain

abstraction function

concretization function

{{x 7→ 1, y 7→ 0},

{x 7→ 2, y 7→ 0},

{x 7→ 3, y 7→ 0},

{x 7→ 0, y 7→ 1},

{x 7→ 0, y 7→ 2},

{x 7→ 0, y 7→ 3}}

{(x ≥ 1 ∧ y = 0),

(x = 0 ∧ y ≥ 1)}

8/38

Galois Connections

• Galois connection is a quadruple π = (P, α, γ,Q) such that:

• P = ⟨P,≤⟩ and Q = ⟨Q,⊑⟩ are partially ordered sets (posets),
• α : P → Q and γ : Q → P are functions such that ∀p ∈ P and ∀q ∈ Q :

p ≤ γ(q) ⇐⇒ α(p) ⊑ q

• In abstract interpretation, Q is the abstract domain and P a (more) concrete domain –
elements of both domains, called abstract/concrete contexts, represent sets of states:

concrete contexts such as: abstract contexts such as:

P Q

α

γ

concrete domain abstract domain

abstraction function

concretization function

{{x 7→ 1, y 7→ 0},

{x 7→ 2, y 7→ 0},

{x 7→ 3, y 7→ 0},

{x 7→ 0, y 7→ 1},

{x 7→ 0, y 7→ 2},

{x 7→ 0, y 7→ 3}}

{(x ≥ 1 ∧ y = 0),

(x = 0 ∧ y ≥ 1)}

8/38

Galois Connections

• Galois connection is a quadruple π = (P, α, γ,Q) such that:

• P = ⟨P,≤⟩ and Q = ⟨Q,⊑⟩ are partially ordered sets (posets),
• α : P → Q and γ : Q → P are functions such that ∀p ∈ P and ∀q ∈ Q :

p ≤ γ(q) ⇐⇒ α(p) ⊑ q

• In abstract interpretation, Q is the abstract domain and P a (more) concrete domain –
elements of both domains, called abstract/concrete contexts, represent sets of states:

concrete contexts such as: abstract contexts such as:

P Q

α

γ

concrete domain abstract domain

abstraction function

concretization function

{{x 7→ 1, y 7→ 0},

{x 7→ 2, y 7→ 0},

{x 7→ 3, y 7→ 0},

{x 7→ 0, y 7→ 1},

{x 7→ 0, y 7→ 2},

{x 7→ 0, y 7→ 3}}

{(x ≥ 1 ∧ y = 0),

(x = 0 ∧ y ≥ 1)}

8/38

Galois Connections

• Implication: if the abstraction and concretization functions of an abstract
interpretation form a Galois connection, ∀p ∈ P. p ≤ γ(α(p)).

Proof.
Take any p ∈ P, and let q = α(p).
As q = α(p) ⇒ α(p) ⊑ q, the definition of Galois connections implies p ≤ γ(q).
By plugging in the fact that q = α(p), we get p ≤ γ(α(p)).

P

concrete domain

Q

abstract domain

p q

p′
≤

α

γ

• If each instruction i from Instr and the corresponding abstract transformer τi respect
the Galois connection, i.e., for each p ∈ P,

α(i(p)) ⊑ τi (α(p)),

the abstract interpretation may only over-approximate the concrete semantics.
Hence, it is sound.

9/38

Galois Connections

• Implication: if the abstraction and concretization functions of an abstract
interpretation form a Galois connection, ∀p ∈ P. p ≤ γ(α(p)).

Proof.
Take any p ∈ P, and let q = α(p).
As q = α(p) ⇒ α(p) ⊑ q, the definition of Galois connections implies p ≤ γ(q).
By plugging in the fact that q = α(p), we get p ≤ γ(α(p)).

P

concrete domain

Q

abstract domain

p q

p′
≤

α

γ

• If each instruction i from Instr and the corresponding abstract transformer τi respect
the Galois connection, i.e., for each p ∈ P,

α(i(p)) ⊑ τi (α(p)),

the abstract interpretation may only over-approximate the concrete semantics.
Hence, it is sound.

9/38

Fixpoint Approximation

• The analysis of a program through an abstract interpretation may be viewed as finding
the least/greatest fixpoint of the equation A = τ(A) where A is a vector of abstract
contexts (one per program location) and τ is an extension of τ to the entire program.

• By Knaster-Tarski, these fixpoints exist.

• In some cases (e.g., given a program with loops and using an infinite domain),
computation of the most precise abstract fixpoint is not generally guaranteed to
terminate (consider id as the abstraction function).

• To guarantee termination, the fixpoint can be approximated. This is done using the
following two operations:

• widening: performs an over-approximation of a fixpoint,
• narrowing: refines an approximation of a fixpoint.

• Neither widening nor narrowing are necessary, but at least widening is often
convenient. Narrowing may be sometimes missing (e.g., in polyhedral analysis).

10/38

Widening

• Let I = (Q,⊔,⊑,⊤,⊥, τ) be an abstract interpretation of a program.

• The binary widening operation ▽ is defined as:

• ▽ : Q × Q → Q,
• ∀C ,D ∈ Q : (C ⊔D) ⊑ (C▽D),
• for all increasing infinite sequences C0 ⊑ C1 ⊑ . . . ⊑ Cn ⊑ . . ., it holds that the

infinite sequence s0, s1, . . . , sn, . . . defined recursively as

s0 = C0,

sn = sn−1▽Cn

is not strictly increasing (and because the result of ▽ is an upper bound, the
sequence eventually stabilizes).

• Widening can be applied later in the computation, the later it is applied the more
precise is the result (but the computation takes longer time).

11/38

Narrowing

• Let I = (Q,⊔,⊑,⊤,⊥, τ) be an abstract interpretation of a program.

• The binary narrowing operation △ is defined as:

• △: Q × Q → Q,
• ∀C ,D ∈ Q : C ⊒ D ⇒ (C ⊒ (C △ D) ⊒ D),
• for all decreasing infinite sequences C0 ⊒ C1 ⊒ . . . ⊒ Cn ⊒ . . ., it holds that the

infinite sequence s0, s1, . . . , sn, . . . defined recursively as

s0 = C0,

sn = sn−1 △ Cn

is not strictly decreasing (and because the result of C △ D is a lower bound
of C , the sequence eventually stabilizes).

• Narrowing is performed only once a fixpoint is reached via widening.

12/38

Representation of a Program

• We choose (deterministic) finite flowcharts as a language independent representation
of programs.

• A finite flowchart is a directed graph with 5 types of nodes:

• entries,
• assignments,
• tests,
• junctions,
• exits.

• Abstract interpretation iteratively computes abstract contexts for each edge of the
flowchart.

• An equation is associated with each edge of the flowchart according to the type of the
tail node of the edge.

13/38

Representation of a Program

• Entry: denotes the entry point of a program. CO = ⊤.

CO

• Assignment: denotes the assignment A of expression <Expr> to the variable <Ident>.
CO = τ(A,CI).

<Ident> := <Expr>

CI

CO

• Test: denotes splitting of the flow to branches Btrue and Bfalse according to the
Boolean condition <Cond>. Two contexts are computed: Ctrue = τ(Btrue ,CI) and
Cfalse = τ(Bfalse ,CI).

<Cond>

CI
Cfalse

Ctrue

14/38

Representation of a Program

• Entry: denotes the entry point of a program. CO = ⊤.

CO

• Assignment: denotes the assignment A of expression <Expr> to the variable <Ident>.
CO = τ(A,CI).

<Ident> := <Expr>

CI

CO

• Test: denotes splitting of the flow to branches Btrue and Bfalse according to the
Boolean condition <Cond>. Two contexts are computed: Ctrue = τ(Btrue ,CI) and
Cfalse = τ(Bfalse ,CI).

<Cond>

CI
Cfalse

Ctrue

14/38

Representation of a Program

• Entry: denotes the entry point of a program. CO = ⊤.

CO

• Assignment: denotes the assignment A of expression <Expr> to the variable <Ident>.
CO = τ(A,CI).

<Ident> := <Expr>

CI

CO

• Test: denotes splitting of the flow to branches Btrue and Bfalse according to the
Boolean condition <Cond>. Two contexts are computed: Ctrue = τ(Btrue ,CI) and
Cfalse = τ(Bfalse ,CI).

<Cond>

CI
Cfalse

Ctrue

14/38

Representation of a Program

• Junction: denotes join J of several branches of code execution (e.g., after ...then
... and ...else ... branches of an if statement or for a loop join).
CO = τ(J,C1 ⊔ · · · ⊔Cn).

. . .C1 Cn

CO

It often holds for junctions that:

• τ(J) = λx . x — for simple junctions (if branches),

• τ(J) = λx . Cp▽x — for loop junctions,

• τ(J) = λx . Cp △ x — for loop junctions (only after widening)

where Cp is the abstract context computed for the node in the previous iteration.

• Exit: denotes the exit point of a program.

15/38

Representation of a Program

• Junction: denotes join J of several branches of code execution (e.g., after ...then
... and ...else ... branches of an if statement or for a loop join).
CO = τ(J,C1 ⊔ · · · ⊔Cn).

. . .C1 Cn

CO

It often holds for junctions that:

• τ(J) = λx . x — for simple junctions (if branches),

• τ(J) = λx . Cp▽x — for loop junctions,

• τ(J) = λx . Cp △ x — for loop junctions (only after widening)

where Cp is the abstract context computed for the node in the previous iteration.

• Exit: denotes the exit point of a program.

15/38

Program Example
• Consider the below flowchart program and analysis with the interval abstract domain I:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• C0
0 = [,] C1

0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1] C2
2 = [1,+∞] C3

2 = [1, 101]

• C0
3 = [,] C1

3 = [1, 1] C2
3 = [1, 100]

• C0
4 = [,] C1

4 = [2, 2] C2
4 = [2, 101]

• C0
5 = [,] C1

5 = [101,+∞] C2
5 = [101, 101]

Equations that describe the
flow of the analysis; their fix-
point solution represents re-
sults of the analysis:

• C0 = [−∞,+∞]

• C1 = [1, 1]•

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

16/38

Program Example
• Consider the below flowchart program and analysis with the interval abstract domain I:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• We will use notation [a, b] for the predicate
a ≤ x ≤ b where a, b ∈ Z ∪ {−∞,+∞}.

• Assignments: interval arithmetic (e.g.,
[i , j] + [k, l] = [i + k, j + l]).

• Join: [a, b]⊔ [c, d] = [min(a, c),max(b, d)].

• Tests: intersections of intervals.

• We define the widening ▽ of intervals as:

• [,] = glb(I), needs special handling (skipped)
• [i , j]▽[k, l] = [if k < i then −∞ else i ,

if l > j then +∞ else j].

• C0
0 = [,] C1

0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1] C2
2 = [1,+∞] C3

2 = [1, 101]

• C0
3 = [,] C1

3 = [1, 1] C2
3 = [1, 100]

• C0
4 = [,] C1

4 = [2, 2] C2
4 = [2, 101]

• C0
5 = [,] C1

5 = [101,+∞] C2
5 = [101, 101]

Equations that describe the
flow of the analysis; their fix-
point solution represents re-
sults of the analysis:

• C0 = [−∞,+∞]

• C1 = [1, 1]•

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

16/38

Program Example
• Consider the below flowchart program and analysis with the interval abstract domain I:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• We will use notation [a, b] for the predicate
a ≤ x ≤ b where a, b ∈ Z ∪ {−∞,+∞}.

• Assignments: interval arithmetic (e.g.,
[i , j] + [k, l] = [i + k, j + l]).

• Join: [a, b]⊔ [c, d] = [min(a, c),max(b, d)].

• Tests: intersections of intervals.

• We define the widening ▽ of intervals as:

• [,] = glb(I), needs special handling (skipped)
• [i , j]▽[k, l] = [if k < i then −∞ else i ,

if l > j then +∞ else j].

• C0
0 = [,] C1

0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1] C2
2 = [1,+∞] C3

2 = [1, 101]

• C0
3 = [,] C1

3 = [1, 1] C2
3 = [1, 100]

• C0
4 = [,] C1

4 = [2, 2] C2
4 = [2, 101]

• C0
5 = [,] C1

5 = [101,+∞] C2
5 = [101, 101]

Equations that describe the
flow of the analysis; their fix-
point solution represents re-
sults of the analysis:

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2▽(C1 ⊔C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

16/38

Program Example
• Consider the below flowchart program and analysis with the interval abstract domain I:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• We will use notation [a, b] for the predicate
a ≤ x ≤ b where a, b ∈ Z ∪ {−∞,+∞}.

• Assignments: interval arithmetic (e.g.,
[i , j] + [k, l] = [i + k, j + l]).

• Join: [a, b]⊔ [c, d] = [min(a, c),max(b, d)].

• Tests: intersections of intervals.

• We define the widening ▽ of intervals as:

• [,] = glb(I), needs special handling (skipped)
• [i , j]▽[k, l] = [if k < i then −∞ else i ,

if l > j then +∞ else j].

• C0
0 = [,] C1

0 = [−∞,+∞]

• C0
1 = [,]

C1
1 = [1, 1]

• C0
2 = [,]

C1
2 = [1, 1] C2

2 = [1,+∞] C3
2 = [1, 101]

• C0
3 = [,]

C1
3 = [1, 1] C2

3 = [1, 100]

• C0
4 = [,]

C1
4 = [2, 2] C2

4 = [2, 101]

• C0
5 = [,]

C1
5 = [101,+∞] C2

5 = [101, 101]

Equations that describe the
flow of the analysis; their fix-
point solution represents re-
sults of the analysis:

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2▽(C1 ⊔C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

16/38

Program Example
• Consider the below flowchart program and analysis with the interval abstract domain I:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• We will use notation [a, b] for the predicate
a ≤ x ≤ b where a, b ∈ Z ∪ {−∞,+∞}.

• Assignments: interval arithmetic (e.g.,
[i , j] + [k, l] = [i + k, j + l]).

• Join: [a, b]⊔ [c, d] = [min(a, c),max(b, d)].

• Tests: intersections of intervals.

• We define the widening ▽ of intervals as:

• [,] = glb(I), needs special handling (skipped)
• [i , j]▽[k, l] = [if k < i then −∞ else i ,

if l > j then +∞ else j].

• C0
0 = [,] C1

0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,]

C1
2 = [1, 1] C2

2 = [1,+∞] C3
2 = [1, 101]

• C0
3 = [,]

C1
3 = [1, 1] C2

3 = [1, 100]

• C0
4 = [,]

C1
4 = [2, 2] C2

4 = [2, 101]

• C0
5 = [,]

C1
5 = [101,+∞] C2

5 = [101, 101]

Equations that describe the
flow of the analysis; their fix-
point solution represents re-
sults of the analysis:

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2▽(C1 ⊔C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

16/38

Program Example
• Consider the below flowchart program and analysis with the interval abstract domain I:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• We will use notation [a, b] for the predicate
a ≤ x ≤ b where a, b ∈ Z ∪ {−∞,+∞}.

• Assignments: interval arithmetic (e.g.,
[i , j] + [k, l] = [i + k, j + l]).

• Join: [a, b]⊔ [c, d] = [min(a, c),max(b, d)].

• Tests: intersections of intervals.

• We define the widening ▽ of intervals as:

• [,] = glb(I), needs special handling (skipped)
• [i , j]▽[k, l] = [if k < i then −∞ else i ,

if l > j then +∞ else j].

• C0
0 = [,] C1

0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1]

C2
2 = [1,+∞] C3

2 = [1, 101]

• C0
3 = [,]

C1
3 = [1, 1] C2

3 = [1, 100]

• C0
4 = [,]

C1
4 = [2, 2] C2

4 = [2, 101]

• C0
5 = [,]

C1
5 = [101,+∞] C2

5 = [101, 101]

Equations that describe the
flow of the analysis; their fix-
point solution represents re-
sults of the analysis:

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2▽(C1 ⊔C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

16/38

Program Example
• Consider the below flowchart program and analysis with the interval abstract domain I:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• We will use notation [a, b] for the predicate
a ≤ x ≤ b where a, b ∈ Z ∪ {−∞,+∞}.

• Assignments: interval arithmetic (e.g.,
[i , j] + [k, l] = [i + k, j + l]).

• Join: [a, b]⊔ [c, d] = [min(a, c),max(b, d)].

• Tests: intersections of intervals.

• We define the widening ▽ of intervals as:

• [,] = glb(I), needs special handling (skipped)
• [i , j]▽[k, l] = [if k < i then −∞ else i ,

if l > j then +∞ else j].

• C0
0 = [,] C1

0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1]

C2
2 = [1,+∞] C3

2 = [1, 101]

• C0
3 = [,] C1

3 = [1, 1]

C2
3 = [1, 100]

• C0
4 = [,]

C1
4 = [2, 2] C2

4 = [2, 101]

• C0
5 = [,]

C1
5 = [101,+∞] C2

5 = [101, 101]

Equations that describe the
flow of the analysis; their fix-
point solution represents re-
sults of the analysis:

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2▽(C1 ⊔C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

16/38

Program Example
• Consider the below flowchart program and analysis with the interval abstract domain I:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• We will use notation [a, b] for the predicate
a ≤ x ≤ b where a, b ∈ Z ∪ {−∞,+∞}.

• Assignments: interval arithmetic (e.g.,
[i , j] + [k, l] = [i + k, j + l]).

• Join: [a, b]⊔ [c, d] = [min(a, c),max(b, d)].

• Tests: intersections of intervals.

• We define the widening ▽ of intervals as:

• [,] = glb(I), needs special handling (skipped)
• [i , j]▽[k, l] = [if k < i then −∞ else i ,

if l > j then +∞ else j].

• C0
0 = [,] C1

0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1]

C2
2 = [1,+∞] C3

2 = [1, 101]

• C0
3 = [,] C1

3 = [1, 1]

C2
3 = [1, 100]

• C0
4 = [,] C1

4 = [2, 2]

C2
4 = [2, 101]

• C0
5 = [,]

C1
5 = [101,+∞] C2

5 = [101, 101]

Equations that describe the
flow of the analysis; their fix-
point solution represents re-
sults of the analysis:

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2▽(C1 ⊔C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

16/38

Program Example
• Consider the below flowchart program and analysis with the interval abstract domain I:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• We will use notation [a, b] for the predicate
a ≤ x ≤ b where a, b ∈ Z ∪ {−∞,+∞}.

• Assignments: interval arithmetic (e.g.,
[i , j] + [k, l] = [i + k, j + l]).

• Join: [a, b]⊔ [c, d] = [min(a, c),max(b, d)].

• Tests: intersections of intervals.

• We define the widening ▽ of intervals as:

• [,] = glb(I), needs special handling (skipped)
• [i , j]▽[k, l] = [if k < i then −∞ else i ,

if l > j then +∞ else j].

• C0
0 = [,] C1

0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1] C2
2 = [1,+∞]

C3
2 = [1, 101]

• C0
3 = [,] C1

3 = [1, 1]

C2
3 = [1, 100]

• C0
4 = [,] C1

4 = [2, 2]

C2
4 = [2, 101]

• C0
5 = [,]

C1
5 = [101,+∞] C2

5 = [101, 101]

Equations that describe the
flow of the analysis; their fix-
point solution represents re-
sults of the analysis:

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2▽(C1 ⊔C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

16/38

Program Example
• Consider the below flowchart program and analysis with the interval abstract domain I:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• We will use notation [a, b] for the predicate
a ≤ x ≤ b where a, b ∈ Z ∪ {−∞,+∞}.

• Assignments: interval arithmetic (e.g.,
[i , j] + [k, l] = [i + k, j + l]).

• Join: [a, b]⊔ [c, d] = [min(a, c),max(b, d)].

• Tests: intersections of intervals.

• We define the widening ▽ of intervals as:

• [,] = glb(I), needs special handling (skipped)
• [i , j]▽[k, l] = [if k < i then −∞ else i ,

if l > j then +∞ else j].

• C0
0 = [,] C1

0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1] C2
2 = [1,+∞]

C3
2 = [1, 101]

• C0
3 = [,] C1

3 = [1, 1] C2
3 = [1, 100]

• C0
4 = [,] C1

4 = [2, 2]

C2
4 = [2, 101]

• C0
5 = [,]

C1
5 = [101,+∞] C2

5 = [101, 101]

Equations that describe the
flow of the analysis; their fix-
point solution represents re-
sults of the analysis:

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2▽(C1 ⊔C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

16/38

Program Example
• Consider the below flowchart program and analysis with the interval abstract domain I:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• We will use notation [a, b] for the predicate
a ≤ x ≤ b where a, b ∈ Z ∪ {−∞,+∞}.

• Assignments: interval arithmetic (e.g.,
[i , j] + [k, l] = [i + k, j + l]).

• Join: [a, b]⊔ [c, d] = [min(a, c),max(b, d)].

• Tests: intersections of intervals.

• We define the widening ▽ of intervals as:

• [,] = glb(I), needs special handling (skipped)
• [i , j]▽[k, l] = [if k < i then −∞ else i ,

if l > j then +∞ else j].

• C0
0 = [,] C1

0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1] C2
2 = [1,+∞]

C3
2 = [1, 101]

• C0
3 = [,] C1

3 = [1, 1] C2
3 = [1, 100]

• C0
4 = [,] C1

4 = [2, 2] C2
4 = [2, 101]

• C0
5 = [,]

C1
5 = [101,+∞] C2

5 = [101, 101]

Equations that describe the
flow of the analysis; their fix-
point solution represents re-
sults of the analysis:

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2▽(C1 ⊔C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

16/38

Program Example
• Consider the below flowchart program and analysis with the interval abstract domain I:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• We will use notation [a, b] for the predicate
a ≤ x ≤ b where a, b ∈ Z ∪ {−∞,+∞}.

• Assignments: interval arithmetic (e.g.,
[i , j] + [k, l] = [i + k, j + l]).

• Join: [a, b]⊔ [c, d] = [min(a, c),max(b, d)].

• Tests: intersections of intervals.

• We define the widening ▽ of intervals as:

• [,] = glb(I), needs special handling (skipped)
• [i , j]▽[k, l] = [if k < i then −∞ else i ,

if l > j then +∞ else j].

• C0
0 = [,] C1

0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1] C2
2 = [1,+∞]

C3
2 = [1, 101]

• C0
3 = [,] C1

3 = [1, 1] C2
3 = [1, 100]

• C0
4 = [,] C1

4 = [2, 2] C2
4 = [2, 101]

• C0
5 = [,] C1

5 = [101,+∞]

C2
5 = [101, 101]

Equations that describe the
flow of the analysis; their fix-
point solution represents re-
sults of the analysis:

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2▽(C1 ⊔C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

16/38

Program Example
• Consider the below flowchart program and analysis with the interval abstract domain I:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• Let us now define the narrowing operation △ over
intervals as

• [i , j] △ [k, l] = [
if i = −∞ then k else min(i , k),
if j = +∞ then l else max(j , l)].

• We now substitute the equation for C2 with a new
one that uses narrowing.

• C0
0 = [,] C1

0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1] C2
2 = [1,+∞]

C3
2 = [1, 101]

• C0
3 = [,] C1

3 = [1, 1] C2
3 = [1, 100]

• C0
4 = [,] C1

4 = [2, 2] C2
4 = [2, 101]

• C0
5 = [,] C1

5 = [101,+∞]

C2
5 = [101, 101]

Equations that describe the
flow of the analysis; their fix-
point solution represents re-
sults of the analysis:

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2△(C1 ⊔C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

16/38

Program Example
• Consider the below flowchart program and analysis with the interval abstract domain I:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• Let us now define the narrowing operation △ over
intervals as

• [i , j] △ [k, l] = [
if i = −∞ then k else min(i , k),
if j = +∞ then l else max(j , l)].

• We now substitute the equation for C2 with a new
one that uses narrowing.

• C0
0 = [,] C1

0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1] C2
2 = [1,+∞] C3

2 = [1, 101]

• C0
3 = [,] C1

3 = [1, 1] C2
3 = [1, 100]

• C0
4 = [,] C1

4 = [2, 2] C2
4 = [2, 101]

• C0
5 = [,] C1

5 = [101,+∞]

C2
5 = [101, 101]

Equations that describe the
flow of the analysis; their fix-
point solution represents re-
sults of the analysis:

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2△(C1 ⊔C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

16/38

Program Example
• Consider the below flowchart program and analysis with the interval abstract domain I:

C0

x := 1

C1

C2

x ≤ 100
false

true C3

C5

x := x + 1

C4

• Let us now define the narrowing operation △ over
intervals as

• [i , j] △ [k, l] = [
if i = −∞ then k else min(i , k),
if j = +∞ then l else max(j , l)].

• We now substitute the equation for C2 with a new
one that uses narrowing.

• C0
0 = [,] C1

0 = [−∞,+∞]

• C0
1 = [,] C1

1 = [1, 1]

• C0
2 = [,] C1

2 = [1, 1] C2
2 = [1,+∞] C3

2 = [1, 101]

• C0
3 = [,] C1

3 = [1, 1] C2
3 = [1, 100]

• C0
4 = [,] C1

4 = [2, 2] C2
4 = [2, 101]

• C0
5 = [,] C1

5 = [101,+∞] C2
5 = [101, 101]

Equations that describe the
flow of the analysis; their fix-
point solution represents re-
sults of the analysis:

• C0 = [−∞,+∞]

• C1 = [1, 1]

• C2 = C2△(C1 ⊔C4)

• C3 = C2 ∩ [−∞, 100]

• C4 = C3 + [1, 1]

• C5 = C2 ∩ [101,+∞]

16/38

From a Practical Point of View

• Concepts like Galois connections and even the abstraction and concretisation functions
typically stay in the theory only (not really implemented): may be used to prove
correctness of the analysis.

• One typically needs to implement the following:

• the abstract domain,
• the ordering relation,
• join,
• widening,
• abstract transformers,
• fixpoint loop, input, output, translation to some intermediate format, ...

– unless provided by some framework.

17/38

Polyhedral Analysis

Polyhedral Analysis

• An abstract interpretation-based approach of automatic discovery of relations among
numerical program variables expressible as linear inequations,

• this can be seen as a generalization of the interval analysis.

• Let x⃗ = x1, . . . , xn ∈ Rn be the variables of a program. We can use a convex
polyhedron (convex polytope) P ⊆ Rn to represent a set of assignments to x⃗ .

• We use convex polyhedra because operations on them are reasonably efficient (a set
C ⊆ Rn is convex iff ∀x1, x2 ∈ C , ∀0 ≤ λ ≤ 1 : λx1 + (1− λ)x2 ∈ C).

convex set non-convex set

x1
x2

x1
x2

• Still usually quite expensive, so often replaced by cheaper domains: signs, intervals,
DBMs, octagons (mentioned later on).

19/38

Representation of a Convex Polyhedron

• We use two dual ways to represent a convex polyhedron:

• by a system of linear inequations, and
• by the frame of the polyhedron.

• We can alter between these representations (with some overhead).

• Efficient execution of different operations require different representation.

20/38

System of Linear Inequations

• Let x⃗ = x1, . . . , xn ∈ Rn be the variables of a program. Given a finite set of m linear
inequations over x⃗ of the form{

n∑
i=1

ajixi ≤ bj

∣∣∣∣∣ 1 ≤ j ≤ m

}

or equivalently using vectors and matrices as

x⃗ · A ≤ b⃗,

we can geometrically interpret the solutions of the inequations as a convex polyhedron
in Rn defined by the intersection of halfspaces corresponding to each inequality.

21/38

The Frame of a Convex Polyhedron

• A convex polyhedron P can also be characterized by its frame F = (V ,R, L):

• Vertices V : points v⃗ of a polyhedron P that are not convex combinations of
other points {w⃗1, . . . , w⃗m} of P,((

v⃗ =
m∑
i=1

λi w⃗i

)
∧ (∀1 ≤ i ≤ m : (w⃗i ∈ P ∧ λi ≥ 0)) ∧

(
m∑
i=1

λi = 1

))
⇒

⇒ (∀1 ≤ i ≤ m : (λi = 0 ∨ w⃗i = v⃗)) .

• Convex hull: the set of all convex combinations of V .

22/38

The Frame of a Convex Polyhedron

• Extreme rays R: rays r⃗ of P (i.e. vectors such that there exists a half-line
parallel to r⃗ and entirely included in P) that are not positive combinations of
other rays s⃗1, . . . , s⃗p of P:(

r⃗ =

p∑
i=1

µi s⃗i ∧
(
∀1 ≤ i ≤ p : µi ∈ R+

))
⇒ (∀1 ≤ i ≤ p : (µi = 0 ∨ s⃗i = r⃗)).

• Lines L: vectors l⃗ such that both l⃗ and −l⃗ are rays of P:

∀x⃗ ∈ P, ∀µ ∈ R : x⃗ + µl⃗ ∈ P.

• Every point x⃗ of the polyhedron P defined by the frame F = (V ,R, L) can be
obtained from V , R and L:

x⃗ =
σ∑
i=1

λi v⃗i +

ρ∑
j=1

µj r⃗j +
δ∑

k=1

νk l⃗k

where 0 ≤ λ1, . . . , λσ ≤ 1,
σ∑
i=1

λi = 1, µ1, . . . , µρ ∈ R+, ν1, . . . , νδ ∈ R.

23/38

The Frame of a Convex Polyhedron

• Extreme rays R: rays r⃗ of P (i.e. vectors such that there exists a half-line
parallel to r⃗ and entirely included in P) that are not positive combinations of
other rays s⃗1, . . . , s⃗p of P:(

r⃗ =

p∑
i=1

µi s⃗i ∧
(
∀1 ≤ i ≤ p : µi ∈ R+

))
⇒ (∀1 ≤ i ≤ p : (µi = 0 ∨ s⃗i = r⃗)).

• Lines L: vectors l⃗ such that both l⃗ and −l⃗ are rays of P:

∀x⃗ ∈ P, ∀µ ∈ R : x⃗ + µl⃗ ∈ P.

• Every point x⃗ of the polyhedron P defined by the frame F = (V ,R, L) can be
obtained from V , R and L:

x⃗ =
σ∑
i=1

λi v⃗i +

ρ∑
j=1

µj r⃗j +
δ∑

k=1

νk l⃗k

where 0 ≤ λ1, . . . , λσ ≤ 1,
σ∑
i=1

λi = 1, µ1, . . . , µρ ∈ R+, ν1, . . . , νδ ∈ R.

23/38

The Frame of a Convex Polyhedron

• Extreme rays R: rays r⃗ of P (i.e. vectors such that there exists a half-line
parallel to r⃗ and entirely included in P) that are not positive combinations of
other rays s⃗1, . . . , s⃗p of P:(

r⃗ =

p∑
i=1

µi s⃗i ∧
(
∀1 ≤ i ≤ p : µi ∈ R+

))
⇒ (∀1 ≤ i ≤ p : (µi = 0 ∨ s⃗i = r⃗)).

• Lines L: vectors l⃗ such that both l⃗ and −l⃗ are rays of P:

∀x⃗ ∈ P, ∀µ ∈ R : x⃗ + µl⃗ ∈ P.

• Every point x⃗ of the polyhedron P defined by the frame F = (V ,R, L) can be
obtained from V , R and L:

x⃗ =
σ∑
i=1

λi v⃗i +

ρ∑
j=1

µj r⃗j +
δ∑

k=1

νk l⃗k

where 0 ≤ λ1, . . . , λσ ≤ 1,
σ∑
i=1

λi = 1, µ1, . . . , µρ ∈ R+, ν1, . . . , νδ ∈ R.

23/38

Example of a Convex Polyhedron (Polygon)

x1

x2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

x2 = 1

x1 = 2

x1 + 2x2 = 6

x1 − 2x2 = −6

v1

v2

v3

r1

r2

System of linear inequations

x2 ≥ 1

x1 ≥ 2

x1 + 2x2 ≥ 6

x1 − 2x2 ≥ − 6

Frame of a polyhedron

F = (V ,R, L)

V = {v⃗1 = [4, 1], v⃗2 = [2, 2], v⃗3 = [2, 4]}
R = {r⃗1 = (1, 0), r⃗2 = (2, 1)}
L = ∅

24/38

Example of a Convex Polyhedron (Polygon)

x1

x2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

x2 = 1

x1 = 2

x1 + 2x2 = 6

x1 − 2x2 = −6

v1

v2

v3

r1

r2

System of linear inequations

x2 ≥ 1

x1 ≥ 2

x1 + 2x2 ≥ 6

x1 − 2x2 ≥ − 6

Frame of a polyhedron

F = (V ,R, L)

V = {v⃗1 = [4, 1], v⃗2 = [2, 2], v⃗3 = [2, 4]}
R = {r⃗1 = (1, 0), r⃗2 = (2, 1)}
L = ∅

24/38

Example of a Convex Polyhedron (Polygon)

x1

x2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

x2 = 1

x1 = 2

x1 + 2x2 = 6

x1 − 2x2 = −6

v1

v2

v3

r1

r2

System of linear inequations

x2 ≥ 1

x1 ≥ 2

x1 + 2x2 ≥ 6

x1 − 2x2 ≥ − 6

Frame of a polyhedron

F = (V ,R, L)

V = {v⃗1 = [4, 1], v⃗2 = [2, 2], v⃗3 = [2, 4]}
R = {r⃗1 = (1, 0), r⃗2 = (2, 1)}
L = ∅

24/38

Example of a Convex Polyhedron (Polygon)

x1

x2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

x2 = 1

x1 = 2

x1 + 2x2 = 6

x1 − 2x2 = −6

v1

v2

v3

r1

r2

System of linear inequations

x2 ≥ 1

x1 ≥ 2

x1 + 2x2 ≥ 6

x1 − 2x2 ≥ − 6

Frame of a polyhedron

F = (V ,R, L)

V = {v⃗1 = [4, 1], v⃗2 = [2, 2], v⃗3 = [2, 4]}
R = {r⃗1 = (1, 0), r⃗2 = (2, 1)}
L = ∅

24/38

Example of a Convex Polyhedron (Polygon)

x1

x2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

x2 = 1

x1 = 2

x1 + 2x2 = 6

x1 − 2x2 = −6

v1

v2

v3

r1

r2

System of linear inequations

x2 ≥ 1

x1 ≥ 2

x1 + 2x2 ≥ 6

x1 − 2x2 ≥ − 6

Frame of a polyhedron

F = (V ,R, L)

V = {v⃗1 = [4, 1], v⃗2 = [2, 2], v⃗3 = [2, 4]}
R = {r⃗1 = (1, 0), r⃗2 = (2, 1)}
L = ∅

24/38

Example of a Convex Polyhedron (Polygon)

x1

x2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

x2 = 1

x1 = 2

x1 + 2x2 = 6

x1 − 2x2 = −6

v1

v2

v3

r1

r2

System of linear inequations

x2 ≥ 1

x1 ≥ 2

x1 + 2x2 ≥ 6

x1 − 2x2 ≥ − 6

Frame of a polyhedron

F = (V ,R, L)

V = {v⃗1 = [4, 1], v⃗2 = [2, 2], v⃗3 = [2, 4]}
R = {r⃗1 = (1, 0), r⃗2 = (2, 1)}
L = ∅

24/38

Example of a Convex Polyhedron (Polygon)

x1

x2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

x2 = 1

x1 = 2

x1 + 2x2 = 6

x1 − 2x2 = −6

v1

v2

v3

r1

r2

System of linear inequations

x2 ≥ 1

x1 ≥ 2

x1 + 2x2 ≥ 6

x1 − 2x2 ≥ − 6

Frame of a polyhedron

F = (V ,R, L)

V = {v⃗1 = [4, 1], v⃗2 = [2, 2], v⃗3 = [2, 4]}

R = {r⃗1 = (1, 0), r⃗2 = (2, 1)}
L = ∅

24/38

Example of a Convex Polyhedron (Polygon)

x1

x2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

x2 = 1

x1 = 2

x1 + 2x2 = 6

x1 − 2x2 = −6

v1

v2

v3

r1

r2

System of linear inequations

x2 ≥ 1

x1 ≥ 2

x1 + 2x2 ≥ 6

x1 − 2x2 ≥ − 6

Frame of a polyhedron

F = (V ,R, L)

V = {v⃗1 = [4, 1], v⃗2 = [2, 2], v⃗3 = [2, 4]}
R = {r⃗1 = (1, 0), r⃗2 = (2, 1)}

L = ∅

24/38

Example of a Convex Polyhedron (Polygon)

x1

x2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

x2 = 1

x1 = 2

x1 + 2x2 = 6

x1 − 2x2 = −6

v1

v2

v3

r1

r2

System of linear inequations

x2 ≥ 1

x1 ≥ 2

x1 + 2x2 ≥ 6

x1 − 2x2 ≥ − 6

Frame of a polyhedron

F = (V ,R, L)

V = {v⃗1 = [4, 1], v⃗2 = [2, 2], v⃗3 = [2, 4]}
R = {r⃗1 = (1, 0), r⃗2 = (2, 1)}
L = ∅

24/38

Transformations of Convex Polyhedra

• Different types of nodes of the flowchart representation of a program perform distinct
transformation on the polyhedron. The number of input and output polyhedra differs
according to the type of the node.

• Entries: create a polyhedron according to constraints on the input values of variables
(in case there are none for variable xi , the polyhedron is unbounded in i-th dimension).

25/38

Assignments

• Performed operations vary according to assigned expression:

• Non-linear expression xi := <non-linear expression>: because these cannot
be represented using convex polyhedra, any constraint on xi is dropped (we add

line d⃗ to frame such that di = 1 and ∀1 ≤ j ≤ n, i ̸= j : dj = 0).
• Linear expression xi :=

∑n
j=1 ajxj +b : the frame F ′ = (V ′,R′, L′) of the output

polyhedron can be computed from the frame F = (V ,R, L) of the input as

• V ′ = {v⃗ ′
1, . . . , v⃗

′
σ} where v⃗ ′

j is defined by v ′
ji = a⃗v⃗j + b and v ′

jm = vjm
where ∀1 ≤ m ≤ σ,m ̸= i .

• R′ = {r⃗ ′1, . . . , r⃗ ′ρ} where r⃗ ′j is defined by r ′ji = a⃗r⃗j and r ′jm = rjm for

∀1 ≤ m ≤ ρ,m ̸= i .

• L′ = {l⃗ ′1, . . . , l⃗ ′δ} where l⃗ ′j is defined by l ′ji = a⃗l⃗j and l ′jm = ljm for

∀1 ≤ m ≤ δ,m ̸= i .

26/38

Assignments

• Performed operations vary according to assigned expression:

• Non-linear expression xi := <non-linear expression>: because these cannot
be represented using convex polyhedra, any constraint on xi is dropped (we add

line d⃗ to frame such that di = 1 and ∀1 ≤ j ≤ n, i ̸= j : dj = 0).
• Linear expression xi :=

∑n
j=1 ajxj +b : the frame F ′ = (V ′,R′, L′) of the output

polyhedron can be computed from the frame F = (V ,R, L) of the input as

• V ′ = {v⃗ ′
1, . . . , v⃗

′
σ} where v⃗ ′

j is defined by v ′
ji = a⃗v⃗j + b and v ′

jm = vjm
where ∀1 ≤ m ≤ σ,m ̸= i .

• R′ = {r⃗ ′1, . . . , r⃗ ′ρ} where r⃗ ′j is defined by r ′ji = a⃗r⃗j and r ′jm = rjm for

∀1 ≤ m ≤ ρ,m ̸= i .

• L′ = {l⃗ ′1, . . . , l⃗ ′δ} where l⃗ ′j is defined by l ′ji = a⃗l⃗j and l ′jm = ljm for

∀1 ≤ m ≤ δ,m ̸= i .

26/38

Assignments

• Performed operations vary according to assigned expression:

• Non-linear expression xi := <non-linear expression>: because these cannot
be represented using convex polyhedra, any constraint on xi is dropped (we add

line d⃗ to frame such that di = 1 and ∀1 ≤ j ≤ n, i ̸= j : dj = 0).
• Linear expression xi :=

∑n
j=1 ajxj +b : the frame F ′ = (V ′,R′, L′) of the output

polyhedron can be computed from the frame F = (V ,R, L) of the input as

• V ′ = {v⃗ ′
1, . . . , v⃗

′
σ} where v⃗ ′

j is defined by v ′
ji = a⃗v⃗j + b and v ′

jm = vjm
where ∀1 ≤ m ≤ σ,m ̸= i .

• R′ = {r⃗ ′1, . . . , r⃗ ′ρ} where r⃗ ′j is defined by r ′ji = a⃗r⃗j and r ′jm = rjm for

∀1 ≤ m ≤ ρ,m ̸= i .

• L′ = {l⃗ ′1, . . . , l⃗ ′δ} where l⃗ ′j is defined by l ′ji = a⃗l⃗j and l ′jm = ljm for

∀1 ≤ m ≤ δ,m ̸= i .

26/38

Assignments

• Performed operations vary according to assigned expression:

• Non-linear expression xi := <non-linear expression>: because these cannot
be represented using convex polyhedra, any constraint on xi is dropped (we add

line d⃗ to frame such that di = 1 and ∀1 ≤ j ≤ n, i ̸= j : dj = 0).
• Linear expression xi :=

∑n
j=1 ajxj +b : the frame F ′ = (V ′,R′, L′) of the output

polyhedron can be computed from the frame F = (V ,R, L) of the input as

• V ′ = {v⃗ ′
1, . . . , v⃗

′
σ} where v⃗ ′

j is defined by v ′
ji = a⃗v⃗j + b and v ′

jm = vjm
where ∀1 ≤ m ≤ σ,m ̸= i .

• R′ = {r⃗ ′1, . . . , r⃗ ′ρ} where r⃗ ′j is defined by r ′ji = a⃗r⃗j and r ′jm = rjm for

∀1 ≤ m ≤ ρ,m ̸= i .

• L′ = {l⃗ ′1, . . . , l⃗ ′δ} where l⃗ ′j is defined by l ′ji = a⃗l⃗j and l ′jm = ljm for

∀1 ≤ m ≤ δ,m ̸= i .

26/38

Tests

• The input polyhedron P is transformed into two output polyhedra: Pt for the true

branch and Pf for the false branch.

• For a Boolean condition C , it needs to hold that Pt ⊇ P ∩TC ,Pf ⊇ P \TC where TC

is the subset of Rn such that each point of TC satisfies C (the right sides of the
inclusions are not necessarily convex polyhedra).

• The operation that is performed varies according to the Boolean condition of the test:

• Non-linear tests: Pt = Pf = P (can be refined for some cases).
• Linear equality tests: Boolean condition C : a⃗x⃗ = b defines a hyperplane H. If P

is included in H, then Pt = P,Pf = ∅. If P is not included in H, then
Pt = P ∩ H and Pf = P.

• Linear inequality tests: for Boolean condition a⃗x⃗ ≤ b, the outputs are
Pt = P ∩ a⃗x⃗ ≤ b and Pf = P ∩ a⃗x⃗ ≥ b.

27/38

Tests

• The input polyhedron P is transformed into two output polyhedra: Pt for the true

branch and Pf for the false branch.

• For a Boolean condition C , it needs to hold that Pt ⊇ P ∩TC ,Pf ⊇ P \TC where TC

is the subset of Rn such that each point of TC satisfies C (the right sides of the
inclusions are not necessarily convex polyhedra).

• The operation that is performed varies according to the Boolean condition of the test:

• Non-linear tests: Pt = Pf = P (can be refined for some cases).

• Linear equality tests: Boolean condition C : a⃗x⃗ = b defines a hyperplane H. If P
is included in H, then Pt = P,Pf = ∅. If P is not included in H, then
Pt = P ∩ H and Pf = P.

• Linear inequality tests: for Boolean condition a⃗x⃗ ≤ b, the outputs are
Pt = P ∩ a⃗x⃗ ≤ b and Pf = P ∩ a⃗x⃗ ≥ b.

27/38

Tests

• The input polyhedron P is transformed into two output polyhedra: Pt for the true

branch and Pf for the false branch.

• For a Boolean condition C , it needs to hold that Pt ⊇ P ∩TC ,Pf ⊇ P \TC where TC

is the subset of Rn such that each point of TC satisfies C (the right sides of the
inclusions are not necessarily convex polyhedra).

• The operation that is performed varies according to the Boolean condition of the test:

• Non-linear tests: Pt = Pf = P (can be refined for some cases).
• Linear equality tests: Boolean condition C : a⃗x⃗ = b defines a hyperplane H. If P

is included in H, then Pt = P,Pf = ∅. If P is not included in H, then
Pt = P ∩ H and Pf = P.

• Linear inequality tests: for Boolean condition a⃗x⃗ ≤ b, the outputs are
Pt = P ∩ a⃗x⃗ ≤ b and Pf = P ∩ a⃗x⃗ ≥ b.

27/38

Tests

• The input polyhedron P is transformed into two output polyhedra: Pt for the true

branch and Pf for the false branch.

• For a Boolean condition C , it needs to hold that Pt ⊇ P ∩TC ,Pf ⊇ P \TC where TC

is the subset of Rn such that each point of TC satisfies C (the right sides of the
inclusions are not necessarily convex polyhedra).

• The operation that is performed varies according to the Boolean condition of the test:

• Non-linear tests: Pt = Pf = P (can be refined for some cases).
• Linear equality tests: Boolean condition C : a⃗x⃗ = b defines a hyperplane H. If P

is included in H, then Pt = P,Pf = ∅. If P is not included in H, then
Pt = P ∩ H and Pf = P.

• Linear inequality tests: for Boolean condition a⃗x⃗ ≤ b, the outputs are
Pt = P ∩ a⃗x⃗ ≤ b and Pf = P ∩ a⃗x⃗ ≥ b.

27/38

Junctions

• Junctions correspond to merge of several program paths so the output polyhedron P is
union of all input polyhedra Pi . It is computed according to the kind of the junction:

• Simple junctions: for input polyhedra P1, . . . ,Pm, we compute the convex hull
of P1 ∪ · · · ∪ Pm.

• Loop junctions: for input polyhedra P1, . . . ,Pm, let Q be the convex hull of
P1 ∪ · · · ∪ Pm. Then P′ = P▽Q is the convex polyhedron consisting of linear
constraints of P satisfied by every element of Q.

28/38

Junctions

• Junctions correspond to merge of several program paths so the output polyhedron P is
union of all input polyhedra Pi . It is computed according to the kind of the junction:

• Simple junctions: for input polyhedra P1, . . . ,Pm, we compute the convex hull
of P1 ∪ · · · ∪ Pm.

• Loop junctions: for input polyhedra P1, . . . ,Pm, let Q be the convex hull of
P1 ∪ · · · ∪ Pm. Then P′ = P▽Q is the convex polyhedron consisting of linear
constraints of P satisfied by every element of Q.

28/38

Junctions

• Junctions correspond to merge of several program paths so the output polyhedron P is
union of all input polyhedra Pi . It is computed according to the kind of the junction:

• Simple junctions: for input polyhedra P1, . . . ,Pm, we compute the convex hull
of P1 ∪ · · · ∪ Pm.

• Loop junctions: for input polyhedra P1, . . . ,Pm, let Q be the convex hull of
P1 ∪ · · · ∪ Pm. Then P′ = P▽Q is the convex polyhedron consisting of linear
constraints of P satisfied by every element of Q.

28/38

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2▽convex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)convex hull(P1

1 ,P
2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P
2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P
2
4P
2
4

P2
6P
2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P
1
1

= P1
2

P1
1

= P1
2 = P1

3 = P1
5

P1
1 P1

4P
1
4

P1
6P
1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

29/38

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2▽convex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)convex hull(P1

1 ,P
2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P
2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P
2
4P
2
4

P2
6P
2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P
1
1

= P1
2

P1
1

= P1
2 = P1

3 = P1
5

P1
1 P1

4P
1
4

P1
6P
1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

29/38

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2▽convex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)convex hull(P1

1 ,P
2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P
2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P
2
4P
2
4

P2
6P
2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1

P1
1

= P1
2

P1
1

= P1
2 = P1

3 = P1
5

P1
1 P1

4P
1
4

P1
6P
1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

29/38

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2▽convex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)convex hull(P1

1 ,P
2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P
2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P
2
4P
2
4

P2
6P
2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1

P1
1 = P1

2

P1
1 = P1

2

= P1
3 = P1

5

P1
1 P1

4P
1
4

P1
6P
1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

29/38

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2▽convex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)convex hull(P1

1 ,P
2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P
2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P
2
4P
2
4

P2
6P
2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P
1
1 = P1

2

P1
1 = P1

2 = P1
3 = P1

5

P1
1 P1

4P
1
4

P1
6P
1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

29/38

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2▽convex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)convex hull(P1

1 ,P
2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P
2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P
2
4P
2
4

P2
6P
2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P
1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1 P1

4

P1
4

P1
6P
1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

29/38

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2▽convex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)convex hull(P1

1 ,P
2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P
2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P
2
4P
2
4

P2
6P
2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P
1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1

P1
4

P1
4

P1
6

P1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

29/38

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2▽convex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)convex hull(P1

1 ,P
2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P
2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P
2
4P
2
4

P2
6P
2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P
1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1

P1
4

P1
4

P1
6

P1
6

P1
7 = convex hull(P1

4 ,P
1
6)

P1
7

29/38

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2▽convex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)convex hull(P1

1 ,P
2
7)

P2
2 = convex hull(P1

1 ,P
1
7)

P2
2 = P2

3 = P2
5P2

2P
2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P
2
4P
2
4

P2
6P
2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P
1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1

P1
4

P1
4

P1
6

P1
6

P1
7 = convex hull(P1

4 ,P
1
6)

P1
7

29/38

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2▽convex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)convex hull(P1

1 ,P
2
7)

P2
2 = convex hull(P1

1 ,P
1
7)

P2
2 = P2

3 = P2
5

P2
2P
2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P
2
4P
2
4

P2
6P
2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P
1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1

P1
4

P1
4

P1
6

P1
6

P1
7 = convex hull(P1

4 ,P
1
6)

P1
7

29/38

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2▽convex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)convex hull(P1

1 ,P
2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2

P2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7

P2
4

P2
4P
2
4

P2
6P
2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P
1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1

P1
4P
1
4

P1
6P
1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

29/38

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2▽convex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)convex hull(P1

1 ,P
2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2

P2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4

P2
4

P2
4

P2
6

P2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P
1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1

P1
4P
1
4

P1
6P
1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

29/38

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2▽convex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)convex hull(P1

1 ,P
2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P
2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P
2
4

P2
4

P2
6

P2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P
1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1

P1
4P
1
4

P1
6P
1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

29/38

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2▽convex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)

convex hull(P1
1 ,P

2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P
2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7

P2
4P
2
4P
2
4

P2
6P
2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P
1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1

P1
4P
1
4

P1
6P
1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

29/38

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2▽convex hull(P1
1 ,P

2
7)

P3
2 = P3

3 = P3
5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)

convex hull(P1
1 ,P

2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2

P2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P
2
4P
2
4

P2
6P
2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P
1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1 P1

4P
1
4

P1
6P
1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

29/38

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2▽convex hull(P1
1 ,P

2
7)

P3
2 = P3

3 = P3
5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)convex hull(P1

1 ,P
2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P
2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P
2
4P
2
4

P2
6P
2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P
1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1 P1

4P
1
4

P1
6P
1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

29/38

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2▽convex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2 P3

4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)convex hull(P1

1 ,P
2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P
2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P
2
4P
2
4

P2
6P
2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P
1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1 P1

4P
1
4

P1
6P
1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

29/38

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2▽convex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2

P3
4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)convex hull(P1

1 ,P
2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P
2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P
2
4P
2
4

P2
6P
2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P
1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1 P1

4P
1
4

P1
6P
1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

29/38

Example

(P0)

I := 2, J := 0; (P1)

L: (P2)

if . . . then (P3)

xxI := I + 4 (P4)

else (P5)

xxJ := J + 1, I := I + 2; (P6)

fi; (P7)

go to L;

P1
0

P3
2 = P2

2▽convex hull(P1
1 ,P

2
7)P3

2 = P3
3 = P3

5

P3
2

P3
4

P3
6

P3
7 = convex hull(P3

4 ,P
3
6)

convex hull(P1
1 ,P

2
7)convex hull(P1

1 ,P
2
7)

P2
2 = convex hull(P1

1 ,P
1
7)P2

2 = P2
3 = P2

5

P2
2P
2
2

P2
7 = convex hull(P2

4 ,P
2
6)

P2
7 P2

4P
2
4P
2
4

P2
6P
2
6

I

J

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

P1
1P
1
1 = P1

2P1
1 = P1

2 = P1
3 = P1

5

P1
1 P1

4P
1
4

P1
6P
1
6

P1
7 = convex hull(P1

4 ,P
1
6)P1

7

29/38

Various Known Domains

Numerical Domains

Typically, conjunctions of constraints of some form for
a, b, c ∈ Z ∪ {−∞,+∞}:

• Signs: x [≤ | < | = | > | ≥] 0, x = [⊥|⊤].

• Intervals: a ≤ x ≤ b.

• Difference Bound Matrices: x − y ≤ c , [+|−]x ≤ c .

• Octagons: [+|−]x [+|−]y ≤ c , [+|−]x ≤ c .

• Polyhedra: a⃗x⃗ ≤ b.

• Simple Congruences: x = a mod b.

• Linear Congruences: a⃗x⃗ = b mod c.

• ...

Facebook/Meta Infer bounds analysis – for buffer sizes and values
of indices, intervals with the following kinds of bounds are used:

[+|−]∞, linear expressions, a[+|−][min|max](b, x).

31/38

Improving the Precision

The precision of numerical domains can be improved by various
kinds of partitioning:

• Characterizing abstract contexts reachable at each program
line separately (used already in the example with interval
analysis).

• Tracking values up to some preconfigured bound precisely.

• Cutting concrete domains of some variables into some
preconfigured sets of regions (e.g., (−∞, a1), [a1, a2), [a2, a3),
..., [an,+∞) for some n > 1 and ai < ai+1 for 1 ≤ i ≤ n − 1)
and then widening within the regions only.

32/38

Shape Analysis

– Shape analysis: analysis of shapes of dynamic data structures
(not just a may/must point-to analysis).

– Quite complex: characterising infinite sets of graphs!

– Many different domains: one of them is separation logic.

– A fragment of separation logic with a list predicate:

• Pure part – Boolean combinations of x = [y |NULL].
• Spatial part – shape predicates:

• x 7→ [y |NULL] – points-to predicate.
• ls(x , [y |NULL]) – non-empty, singly-linked list predicate.

• Shape predicates joined by the separating conjunction “∗”.
Conjoined heaps must allocate different memory cells, e.g.:

• x 7→ y ∗ x 7→ z is false,
• while x 7→ y ∗ ls(z , y) ∗ u 7→ v is satisfiable.

33/38

Shape Analysis – Continued
– The pure and spatial parts are conjoined.

– The variables are either program variables or existentially
quantified logical variables (denoting anonymous memory cells).

– Separation allows for modular analysis.

– Computing sets of formulae per location (a top-level disjunction).

– Abstract transformers for pointer manipulating statements based
on (partial) concretisation:

• ls(x , y) ≡ x 7→ y ∨ ∃z : x 7→ z ∗ ls(z , y).
• Then manipulate x 7→ y or x 7→ z .

– Join: union of sets of formulae, perhaps with pruning those
covered by other (weaker) formulae (e.g., x 7→ y ⊑ ls(x , y)).

– Widening: based on abstracting sequences of points-to and list
segments through logical variables to a single list segment:

• α(∃y , z : x 7→ y ∗ ls(y , z) ∗ z 7→ NULL) ≡ ls(x ,NULL).

34/38

Abstract Regular Model Checking

– Regular model checking (RMC): system configurations ∼ words,
sets of configurations ∼ regular languages (finite automata).

– Transitions: finite transducers or special operations on automata.

– Abstract RMC – can be viewed as abstract interpretation with
widening that abstracts automata by collapsing some states:

• Overapproximation wrt. language inclusion.

• States to collapse: same languages of words up to some
bound or intersecting the same predicate languages.

• Abstraction is automatically refineable using a CEGAR loop.

– Generalisations: trees and nested forests with leaf-to-root
references – (tuples of (nested)) tree automata.

– Applications: parametric protocols (mutual exclusion, ...),
recursion, communication queues, strings, heap structures
(lists, trees, ...), microprocessor pipelining, ...

35/38

Interprocedural Analysis

Summaries

– Summaries: (sets of) pre-/post-condition pairs for functions.

– Record under which precondition a function can be executed
leading to a given postcondition.

– Pre-/post-conditions encoded using abstract contexts recording
relevant parts of the entire contexts: values of parameters,
relevant global variables, accessible parts of heap, ...,
returned/changed parts of contexts.

– Can be computed top-down:

• If a function has never been called with the precondition,
analyse it and record a new pair into its summary.

• If a function has already been called under the same
precondition, use directly the recorded result.

• If the input context is covered (⊑) by some recorded
precondition: may use the postcondition for a loss of precision.

37/38

Summaries: Bottom-Up

– Summaries can also be computed bottom-up along the call-tree.

– Each function analysed without any known context: needs to
derive under which precondition(s) a function can produce
post-condition(s) meaningful for the given analysis.

– For example:

• If analysing pointer safety and seeing a dereference without
a check, derive that the pointer should be non-null.

• If analysing locking and seeing a lock without a preceding
unlock, derive that the pointer should be unlocked.

– Can be very scalable: each function analysed precisely once!

– Easier to lose information.

– Harder to design the analysis.

38/38

