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Lattices and Fixpoints
A Brief Introduction
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Partial Orders

❖ A tuple (A,≤A) is a poset (partially-ordered set) iff A is a set and ≤A⊆ A× A is

a partial order (i.e., a reflexive, transitive, and antisymmetric binary relation) on A.

❖ An example: Given a set S, (2S ,⊆) is a poset.
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❖ Given a poset (A,≤A) and a set B ⊆ A,

• an element a ∈ A is the greatest lower bound of B (glb/infimum/meet of B, ⊓B) iff

1. ∀b ∈ B. a ≤A b (“lower bound”) and

2. ∀a′ ∈ A. (∀b ∈ B. a′ ≤A b) =⇒ a′ ≤A a (“greatest”),
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1. ∀b ∈ B. a ≤A b (“lower bound”) and

2. ∀a′ ∈ A. (∀b ∈ B. a′ ≤A b) =⇒ a′ ≤A a (“greatest”),

• an element a ∈ A is the least upper bound of B (lub/supremum/join of B, ⊔B) iff

1. ∀b ∈ B. b ≤A a (“upper bound”) and

2. ∀a′ ∈ A. (∀b ∈ B. b ≤A a′) =⇒ a ≤A a′ (“least”),

❖ An example: For (2{a,b,c},⊆), ⊔{∅, {a}, {b}} = {a, b}, and {a} ⊓ {b, c} = ∅.
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Lattices

❖ A poset (A,≤A) is a lattice iff each non-empty, finite subset B of A has a lub as well as

a glb in A.

❖ A poset (A,≤A) is a complete lattice iff each subset B of A has a lub as well as a glb in A.
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Lattices

❖ A poset (A,≤A) is a lattice iff each non-empty, finite subset B of A has a lub as well as

a glb in A.

❖ A poset (A,≤A) is a complete lattice iff each subset B of A has a lub as well as a glb in A.

• ⊥A = ⊓A and ⊤A = ⊔A are the least and greatest elements of a complete lattice,

respectively.

❖ Examples:

• (2{a,b,c},⊆) is a complete lattice, ⊓ corresponds to ∩, ⊔ to ∪, ⊥ to ∅, and ⊤ to

{a, b, c}.

• (N,≤) is a lattice with ⊔ being max and ⊓ being min, but not a complete lattice

since ⊔N does not exist in N.

• (N∞,≤), where N∞ = N ∪ {∞} and ∀n ∈ N. n ≤ ∞, is a complete lattice.

❖ Given a poset (A,≤A), a set B ⊆ A is a chain iff ∀b, b′ ∈ B. b ≤A b′ ∨ b′ ≤A b.

• E.g., {∅, {a}, {a, b}, {a, b, c}} is a chain wrt. (2{a,b,c},⊆).
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Functions on Lattices

❖ Let (A,≤A) and (B,≤B) be lattices.

❖ A function f : A −→ B is monotonic iff ∀a, a′ ∈ A. a ≤A a′ =⇒ f(a) ≤B f(a′).
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Functions on Lattices

❖ Let (A,≤A) and (B,≤B) be lattices.

❖ A function f : A −→ B is monotonic iff ∀a, a′ ∈ A. a ≤A a′ =⇒ f(a) ≤B f(a′).

❖ A function f : A −→ B is ⊔-continuous iff for every chain C ⊆ A, we have

f(⊔C) = ⊔{f(c) | c ∈ C}. Analogously, one can define ⊓-continuous functions.

❖ An element a ∈ A is a fixpoint of a function f : A −→ A iff f(a) = a.

❖ An example: Consider the function f : N∞ −→ N∞ defined such that ∀n ∈ N. f(n) = 0

and f(∞) = ∞.

• f is monotonic since (1) ∀n1, n2 ∈ N. f(n1) = 0 ≤ 0 = f(n2) and

(2) ∀n ∈ N. f(n) = 0 ≤ ∞ = f(∞).

• f is not ⊔-continuous since N is a chain and f(⊔N) = f(∞) = ∞, but

⊔{f(n) | n ∈ N} = ⊔{0} = 0.

• 0 is the least fixpoint of f and ∞ is the greatest fixpoint of f .
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Knaster–Tarski Theorem

❖ Knaster–Tarski Theorem. Let (A,≤A) be a complete lattice and let f : A −→ A be

a monotonic function. Then the set of fixpoints of f in (A,≤A) is also a complete lattice.

❖ Since complete lattices have the least and the greatest element, the theorem in

particular guarantees the existence of a least and greatest fixpoint of f in A.
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❖ Knaster–Tarski Theorem. Let (A,≤A) be a complete lattice and let f : A −→ A be

a monotonic function. Then the set of fixpoints of f in (A,≤A) is also a complete lattice.

❖ Since complete lattices have the least and the greatest element, the theorem in

particular guarantees the existence of a least and greatest fixpoint of f in A.

For the more curious:

❖ In more constructive terms, the least fixpoint of f is the stationary limit of fα(⊥A) for α

ranging over the ordinals.

• An ordinal is the order type of a well-ordered set.

• Every ordinal can be represented as the set of all smaller ordinals. There is the
zero ordinal, successor ordinals, and limit ordinals. Natural numbers correspond to

the so called finite ordinals (ordering types of finite sets), the set of natural numbers

is the first infinite ordinal, and so on.

• fα is defined by transfinite induction: fα+1 = f(fα) and fγ for a limit ordinal γ is

the least upper bound of fβ for all ordinals β smaller than γ.

❖ A dual result holds for the greatest fixpoint.
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Kleene Fixpoint Theorem

❖ Kleene Fixpoint Theorem. Let (A,≤A) be a complete lattice and f : A −→ A a function.

• If f is ⊔-continuous, the least fixpoint of f is µf = ⊔{f i(⊥A) | i ≥ 0}.
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computes the supremum of the ascending chain
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– Moreover, a ⊓-continuous function is monotone, and hence one in fact
computes the infimum of the descending chain

⊤A ≥A f(⊤A) ≥A f(f(⊤A)) ≥ ....

❖ Theorem. For finite complete lattices, every monotonic function is ⊓- and ⊔-continuous.

❖ Corollary. On finite lattices, the Kleene fixpoint theorem is applicable, hence,

• to compute the least fixpoint, start with ⊥A and iteratively apply f till

f i(⊥A) = f i+1(⊥A) = µf ,

• to compute the greatest fixpoint, start with ⊤A and iteratively apply f till

f i(⊤A) = f i+1(⊤A) = νf .
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