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Božetěchova 2, 612 66 Brno

SAT and SMT Solving – p.1/??



SAT and SMT Solving

SAT and SMT Solving – p.2/??



Introduction

❖ The SAT problem is a decision problem which asks whether a given propositional

formula is satisfiable.

❖ To solve instances of SAT, the so called SAT-solvers are used, which implement

a decision procedure for SAT.

❖ The SMT problem extends the SAT problem to satisfiability of first-order formulae with

equality and atoms from various first-order theories:

• linear integer arithmetics, real arithmetics, uninterpreted functions, arrays,

bit-vectors, ..., and their mixtures allowing variables shared among theories,

• e.g., (p) ∧ (¬q) ∧ (a = f(b− c)) ∧ (a− c ≥ 7),

Typically, decidable theories are supported. Sometimes, quantifiers are allowed.

❖ Since satisfiability and validity are dual notions, we may be able to check validity of

formulae by using a decision procedure for satisfiability (using negation of given formulae).

❖ SAT and SMT solving has found many applications in verification (e.g., within predicate

abstraction or invariant checking), test generation, hardware synthesis, error trace

minimisation, artificial intelligence, ...
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Propositional Logic

❖ The SAT problem, which asks whether a given propositional formula is satisfiable, is

the first problem which has been proven to be NP-complete.

❖ Normally, we consider a propositional formula to be given in the conjunctive normal

form (CNF), i.e., as a conjunction of clauses where a clause is a disjunction of literals,

and a literal is a (possibly negated) propositional symbol.

❖ Stated formally, let P be a finite set of propositional symbols.

• If p ∈ P , then p is an atom, and p and ¬p are literals of P .

• A clause is a disjunction of literals l1 ∨ . . . ∨ ln.

• A CNF formula is a conjunction of one or more clauses C1 ∧ . . . ∧ Cn.

❖ An example: Let P = {p, q, r}. Then,

• p, q, r are possible atoms, ¬p and r are examples of literals,

• p ∨ ¬q ∨ ¬r is an example of a clause, and

• (p ∨ ¬q ∨ ¬r) ∧ (¬p ∨ r) is an example of a CNF formula.
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Propositional Logic

❖ Assignments:

• An assignment M is a set of literals such that {p,¬p} ⊆M for no p.

• A literal l can be either true, false, or undefined in M . Assuming that ¬¬l = l:

– l is true in M iff l ∈M ,

– l is false in M iff ¬l ∈M ,

– l is undefined in M otherwise.

• If l is either true or false in M , we say that l is defined.

• If for any p ∈ P , either p ∈M or ¬p ∈M , we say that M is total (in other words, no

literal in P is undefined in M ). Otherwise, M is partial.

❖ An example: Consider the assignment M = {¬p, q}. In M , p, q are defined (p is false

and q is true), whereas r is undefined.
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Propositional Logic

❖ Semantics of propositional logic. Let C be a clause, F a CNF formula, and M an

assignment.

• In a partial assignment M , C can be either true, false, or undefined:

– C is true in M iff l ∈M for at least one literal l in C,

– C is false in M iff ¬l ∈M for each literal l in C,

– otherwise, C is undefined in M .

• F is true (satisfied) in M (written M |= F ) iff all clauses in F are true in M . M is

said to be a model of F . If F has no models, then it is unsatisfiable.

• F is false (falsified) in M (written M 6|= F ) iff some clause in F is false in M .

❖ A formula F ′ is a logical consequence of a formula F (F |= F ′) iff F ′ is true in every

model of F . F and F ′ are logically equivalent iff F |= F ′ and F ′ |= F .

❖ An example: Consider an assignment M = {¬p, q}, clauses C1 = (¬p ∨ ¬q), C2 = (q),

C3 = (p ∨ ¬q), C4 = (p ∨ ¬q ∨ r), and CNF formulae F = C1 ∧ C2, F ′ = C3 ∧ C4.

• C1 and C2 are true in M , C3 is false in M , and C4 is undefined in M .

• F is satisfied in M (M is a model of F ), whereas F ′ is falsified in M (M is not

a model of F ′).
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Duality of Satisfiability and Validity

❖ For propositional logic, satisfiability and validity are dual notions which means that one

can be expressed in terms of the other.

❖ Let F be a propositional formula.

• F is satisfiable iff there exists an assignment M such that M |= F .

• F is valid iff for all assignments M , M |= F .

❖ Clearly, the connection between satisfiability and validity is the following:

• F is valid iff ¬F is unsatisfiable.

❖ An example: Checking validity of the formula F = p ∨ ¬p ∨ q is equivalent to checking

unsatisfiability of the formula ¬F = ¬p ∧ p ∧ ¬q.

❖ Note: For some theories (other than propositional logic), the negation of a formula may

be outside of the theory – then, the above duality is not applicable within the theory, but
between the theory and its dual theory.
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Abstract DPLL Systems

❖ Most SAT-solvers build on variants of the classical Davis-Putnam-Longemann-Loveland

(DPLL) procedure, which we will describe in terms of an abstract DPLL system.

❖ An abstract DPLL system is a pair (S,⇒) where S is a set of states of the system and

⇒⊆ (S × S) is its set of transitions.

• A state is a pair M ‖ F where M is an assignment and F is a CNF formula.

• A special fail state is also introduced.

❖ A derivation over (S,⇒) is any sequence of the form S0 ⇒ S1 ⇒ S2 ⇒ . . . for

S0, S1, S2, . . . ∈ S.

❖ To capture (to some extent) the evolution of an assignment, assignments are turned

into sequences of literals (satisfying the requirements stated previously). The intuition is

that the literals more to the right have been added to the assignment more recently.

❖ An example: p,¬q ‖ (p ∨ ¬q), (¬q ∨ r) is a state.

• Note: We often use “,” instead of “∧”.
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Abstract DPLL Systems

❖ The transition relation of an abstract DPLL system is defined by means of transition rules.

• Intuitively, a transition rule consists of a condition and an effect on system states.

• The condition describes situations when the transition rule may be applied and the

effect describes the result of such an application.
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Abstract DPLL Systems
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❖ The derivation progresses by applying the transition rules, possibly resulting

• in an extension of the assignment M by adding a literal for a so far undefined

propositional symbol, or

• when M falsifies F and therefore another assignment has to be tried, in reverting

M to some previous value and in extending it in a different way than before.

• Some other effects are also possible (learning, restart, ...).
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Abstract DPLL Systems

❖ The transition relation of an abstract DPLL system is defined by means of transition rules.

• Intuitively, a transition rule consists of a condition and an effect on system states.

• The condition describes situations when the transition rule may be applied and the

effect describes the result of such an application.

❖ Given a CNF formula F whose satisfiability is to be checked, a derivation in an abstract

DPLL system starts in the state ∅ ‖ F .

❖ The derivation progresses by applying the transition rules, possibly resulting

• in an extension of the assignment M by adding a literal for a so far undefined

propositional symbol, or

• when M falsifies F and therefore another assignment has to be tried, in reverting

M to some previous value and in extending it in a different way than before.

• Some other effects are also possible (learning, restart, ...).

❖ Some transition rules add a literal which should clearly be added, whereas others have

a speculative nature—they come with a choice/decision of which literal over a given

variable to add to the assignment (a literal added in such a way is annotated, e.g., ¬pd).

❖ If there is no transition from a state s, then s is final.
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Abstract DPLL Systems

❖ In what follows, we first describe transition rules of the most basic, classical DPLL
procedure, yielding the transition relation denoted⇒Cl.

❖ Later, we will extend it by further rules which make the search in the state space

progress faster and are therefore used in modern DPLL procedures, also called

Conflict-Driven Clause Learning (CDCL) systems, yielding the transition relations denoted

⇒M ,⇒L, and⇒R.
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Classical DPLL Rules: PureLiteral

❖ PureLiteral:

M ‖ F ⇒M l ‖ F if











l occurs in some clause of F

¬l occurs in no clause of F

l is undefined in M

❖ An example:

MM∅ ‖ 1 ∨ 2, 2 ∨ 4, 1 ∨ 3 ∨ 4, 1 ∨ 3 ⇒Cl [PureLiteral]

2 ‖ 1 ∨ 2, 2 ∨ 4, 1 ∨ 3 ∨ 4, 1 ∨ 3 ⇒Cl [PureLiteral]

2 4 ‖ 1 ∨ 2, 2 ∨ 4, 1 ∨ 3 ∨ 4, 1 ∨ 3

SAT and SMT Solving – p.12/??



Classical DPLL Rules: Decide

❖ Decide:

M ‖ F ⇒M ld ‖ F if

{

l or ¬l occurs in a clause of F

l is undefined in M

❖ An example:

MM∅ ‖ 1 ∨ 2, 2 ∨ 4, 1 ∨ 3 ∨ 4, 1 ∨ 3 ⇒Cl [Decide]

1d ‖ 1 ∨ 2, 2 ∨ 4, 1 ∨ 3 ∨ 4, 1 ∨ 3

❖ Let M ‖ F be a state of a system and let M be written as a sequence of the form

M0l
d
1M1l

d
2M2 . . . l

d

kMk where ldi are all the decision literals in M . We say that the state

M ‖ F is at decision level k and that all literals of each ldiMi belong to the decision level i.
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Classical DPLL Procedures: UnitPropagate

❖ UnitPropagate:

M ‖ F, C ∨ l⇒M l ‖ F, C ∨ l if

{

M |= ¬C

l is undefined in M

❖ An example:

MM∅ ‖ 1 ∨ 2, 2 ∨ 4, 1 ∨ 3 ∨ 4, 1 ∨ 3 ⇒Cl [Decide]

1d ‖ 1 ∨ 2, 2 ∨ 4, 1 ∨ 3 ∨ 4, 1 ∨ 3 ⇒Cl [UnitPropagate]

1d 3 ‖ 1 ∨ 2, 2 ∨ 4, 1 ∨ 3 ∨ 4, 1 ∨ 3
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Classical DPLL Procedures: BackTrack

❖ BackTrack:

M ld N ‖ F, C ⇒M¬l ‖ F, C if

{

M ld N |= ¬C

N contains no decision literals

❖ We call the clause C conflicting.

❖ An example:

MM∅ ‖ 1 ∨ 2, 1 ∨ 2, 1 ∨ 2, 1 ∨ 2 ⇒Cl [Decide]

1d ‖ 1 ∨ 2, 1 ∨ 2, 1 ∨ 2, 1 ∨ 2 ⇒Cl [UnitPropagate]

1d 2 ‖ 1 ∨ 2, 1 ∨ 2, 1 ∨ 2, 1 ∨ 2 ⇒Cl [BackTrack]

1 ‖ 1 ∨ 2, 1 ∨ 2, 1 ∨ 2, 1 ∨ 2
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Classical DPLL Procedures: Fail

❖ Fail:

M ‖ F, C ⇒ FailState if

{

M |= ¬C

M contains no decision literals

❖ An example:

MM∅ ‖ 1 ∨ 2, 1 ∨ 2, 1 ∨ 2, 1 ∨ 2 ⇒Cl [Decide]

1d ‖ 1 ∨ 2, 1 ∨ 2, 1 ∨ 2, 1 ∨ 2 ⇒Cl [UnitPropagate]

1d 2 ‖ 1 ∨ 2, 1 ∨ 2, 1 ∨ 2, 1 ∨ 2 ⇒Cl [BackTrack]

1 ‖ 1 ∨ 2, 1 ∨ 2, 1 ∨ 2, 1 ∨ 2 ⇒Cl [UnitPropagate]

1 2 ‖ 1 ∨ 2, 1 ∨ 2, 1 ∨ 2, 1 ∨ 2 ⇒Cl [Fail]

FailState
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Classical DPLL Procedures: Fail

❖ Fail:

M ‖ F, C ⇒ FailState if

{

M |= ¬C

M contains no decision literals

❖ An example:

MM∅ ‖ 1 ∨ 2, 1 ∨ 2, 1 ∨ 2, 1 ∨ 2 ⇒Cl [Decide]

1d ‖ 1 ∨ 2, 1 ∨ 2, 1 ∨ 2, 1 ∨ 2 ⇒Cl [UnitPropagate]

1d 2 ‖ 1 ∨ 2, 1 ∨ 2, 1 ∨ 2, 1 ∨ 2 ⇒Cl [BackTrack]

1 ‖ 1 ∨ 2, 1 ∨ 2, 1 ∨ 2, 1 ∨ 2 ⇒Cl [UnitPropagate]

1 2 ‖ 1 ∨ 2, 1 ∨ 2, 1 ∨ 2, 1 ∨ 2 ⇒Cl [Fail]

FailState

❖ On the other hand, if no further rule is applicable and the derivation has not got to

FailState, the given formula is satisfiable.

• In particular, the assignment in the final state is an example of a satisfying

assignment for the formula.
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Classical DPLL Procedures: Applying the Rules

❖ The rules are not applied in a completely random order.

❖ The priorities for applying the rules are as follows:

1. If Fail or BackTrack are applicable, they are applied.

2. Otherwise, UnitPropagate and PureLiteral are applied if possible.

3. Only if no other rule can be applied, Decide is used.

❖ The motivation is clear: reducing the amount of guessing if possible.

❖ The use of Decide is then subject to various heuristics:

• Choose the unassigned variable and value that satisfies the maximum number of

unsatisfied clauses (expensive: requires going through all clauses for each decision).

• Choose the unassigned variable and value that appears in the biggest number of

clauses.

• MOM, VSIDS, ... – beyond the scope of this lecture.
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Modern DPLL Systems

❖ Modern DPLL systems do not use PureLiteral in the derivation process.

• It is used as a preprocessing step for efficiency reasons.

❖ Further, a more sophisticated backtracking mechanism is used.

• BackTrack tries to solve conflicts by reverting the value of the last decision literal

regardless of whether it is relevant for the current conflict or not.

• This can lead to a series of useless back- and forth-computations.

• Instead, one would like to move faster to the relevant decision levels and resolve
the current conflict earlier. This is achieved by using the BackJump rule.
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Classical DPLL Systems: Useless Backtracking

❖ Note: We assume that the “. . .” in the formula below hide a clause containing 1 and

a clause containing 3; hence, PureLiteral is not applicable here.

1d 2 3d 4 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨ 1, . . . ⇒Cl [Decide]
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Classical DPLL Systems: Useless Backtracking
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1d 2 3d 4 5d 6 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [BackTrack]

1d 2 3d 4 5 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [UnitPropagate]

1d 2 3d 4 5 6 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [BackTrack]

1d 2 3 ‖ 1∨2, 3∨4, 5∨ 6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [Decide]

1d 2 3 5d ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [UnitPropagate]

1d 2 3 5d 6 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [BackTrack]

1d 2 3 5 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [UnitPropagate]
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Classical DPLL Systems: Useless Backtracking

❖ Note: We assume that the “. . .” in the formula below hide a clause containing 1 and

a clause containing 3; hence, PureLiteral is not applicable here.

1d 2 3d 4 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨ 1, . . . ⇒Cl [Decide]

1d 2 3d 4 5d ‖ 1∨2, 3∨ 4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [UnitPropagate]

1d 2 3d 4 5d 6 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [BackTrack]

1d 2 3d 4 5 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [UnitPropagate]

1d 2 3d 4 5 6 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [BackTrack]

1d 2 3 ‖ 1∨2, 3∨4, 5∨ 6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [Decide]

1d 2 3 5d ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [UnitPropagate]

1d 2 3 5d 6 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [BackTrack]

1d 2 3 5 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [UnitPropagate]

1d 2 3 5 6 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [BackTrack]
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Classical DPLL Systems: Useless Backtracking

❖ Note: We assume that the “. . .” in the formula below hide a clause containing 1 and

a clause containing 3; hence, PureLiteral is not applicable here.

1d 2 3d 4 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨ 1, . . . ⇒Cl [Decide]

1d 2 3d 4 5d ‖ 1∨2, 3∨ 4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [UnitPropagate]

1d 2 3d 4 5d 6 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [BackTrack]

1d 2 3d 4 5 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [UnitPropagate]

1d 2 3d 4 5 6 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [BackTrack]

1d 2 3 ‖ 1∨2, 3∨4, 5∨ 6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [Decide]

1d 2 3 5d ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [UnitPropagate]

1d 2 3 5d 6 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [BackTrack]

1d 2 3 5 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [UnitPropagate]

1d 2 3 5 6 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [BackTrack]

1 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨ 1, . . . ⇒Cl [Decide]
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Classical DPLL Systems: Useless Backtracking

❖ Note: We assume that the “. . .” in the formula below hide a clause containing 1 and

a clause containing 3; hence, PureLiteral is not applicable here.

1d 2 3d 4 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨ 1, . . . ⇒Cl [Decide]

1d 2 3d 4 5d ‖ 1∨2, 3∨ 4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [UnitPropagate]

1d 2 3d 4 5d 6 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [BackTrack]

1d 2 3d 4 5 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [UnitPropagate]

1d 2 3d 4 5 6 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [BackTrack]

1d 2 3 ‖ 1∨2, 3∨4, 5∨ 6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [Decide]

1d 2 3 5d ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [UnitPropagate]

1d 2 3 5d 6 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [BackTrack]

1d 2 3 5 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [UnitPropagate]

1d 2 3 5 6 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [BackTrack]

1 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨ 1, . . . ⇒Cl [Decide]

1 3d ‖ 1∨2, 3∨ 4, 5∨ 6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [UnitPropagate]
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Classical DPLL Systems: Useless Backtracking

❖ Note: We assume that the “. . .” in the formula below hide a clause containing 1 and

a clause containing 3; hence, PureLiteral is not applicable here.

1d 2 3d 4 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨ 1, . . . ⇒Cl [Decide]

1d 2 3d 4 5d ‖ 1∨2, 3∨ 4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [UnitPropagate]

1d 2 3d 4 5d 6 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [BackTrack]

1d 2 3d 4 5 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [UnitPropagate]

1d 2 3d 4 5 6 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [BackTrack]

1d 2 3 ‖ 1∨2, 3∨4, 5∨ 6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [Decide]

1d 2 3 5d ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [UnitPropagate]

1d 2 3 5d 6 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [BackTrack]

1d 2 3 5 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [UnitPropagate]

1d 2 3 5 6 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [BackTrack]

1 ‖ 1∨2, 3∨4, 5∨6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨ 1, . . . ⇒Cl [Decide]

1 3d ‖ 1∨2, 3∨ 4, 5∨ 6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl [UnitPropagate]

1 3d 4 ‖ 1∨2, 3∨ 4, 5∨ 6∨1, 5∨6∨1, 5∨6∨1, 5∨6∨1, . . . ⇒Cl . . .
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Modern DPLL Systems: BackJump

❖ BackJump:

M ld N ‖ F,C ⇒M l′ ‖ F,C if



























M ld N |= ¬C, and there is

some clause C ′ ∨ l′ such that:

F, C |= C ′ ∨ l′ and M |= ¬C ′,

l′ is undefined in M, and

l′ or ¬l′ occurs in F,C

❖ In the definition of the BackJump rule, the clause C is called conflicting. The clause

C ′ ∨ l′ is called a backjump clause. The literal ld marks the target of the backjump.

• The backjump clause must be entailed by F,C so that the procedure does not start

solving a stronger formula than the given one (strengthened by assuming C ′ ∨ l′

must hold).

• The fact that M |= ¬C ′ implies that l′ must hold.

• l′ must be undefined in M so that it can be made defined.

• The last requirement requires l′ to be related to the given SAT instance.

❖ It can be shown that if there is a conflicting clause, one can always either apply Fail or
BackJump.
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Modern DPLL Systems: BackJump

❖ BackJump:

M ld N ‖ F,C ⇒M l′ ‖ F,C if



























M ld N |= ¬C, and there is

some clause C ′ ∨ l′ such that:

F, C |= C ′ ∨ l′ and M |= ¬C ′,

l′ is undefined in M, and

l′ or ¬l′ occurs in F or in M ld N

❖ An example:

1d 2 3d 4 ‖ 1 ∨ 2, 3 ∨ 4, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, . . . ⇒M [Decide]

1d 2 3d 4 5d ‖ 1 ∨ 2, 3 ∨ 4, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, . . . ⇒M [UnitPropagate]

1d 2 3d 4 5d 6 ‖ 1 ∨ 2, 3 ∨ 4, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, . . . ⇒M [BackJump]

1d 2 5 ‖ 1 ∨ 2, 3 ∨ 4, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, . . . [1 ∨ 5]

Here:

• 1 ∨ 5 is the backjump clause C ′ ∨ l′ (to see that F,C |= C ′ ∨ l′, use resolution on

5 ∨ 6 ∨ 1 and 5 ∨ 6 ∨ 1).

• 5 serves as l′, 3d as ld.

❖ For details on how to compute BackJump clauses, see study literature
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BackJump vs. BackTrack

❖ To summarise the differences of BackJump and BackTrack:

• BackTrack undoes the last decision ld, going back to the previous decision level

and adding ¬l to it.

• BackJump may jump over decision levels that are irrelevant to the conflict.

1d 2 3d 4 5d 6 ‖ 1 ∨ 2, 3 ∨ 4, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, . . . ⇒Cl [BackJump]

1d 2 5 ‖ 1 ∨ 2, 3 ∨ 4, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, . . . [1 ∨ 5]

– BackJump jumps over the decision 3d and its consequence 4, which are

totally unrelated with the reasons for the falsity of the conflicting clause

5 ∨ 6 ∨ 1.
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BackJump vs. BackTrack

❖ To summarise the differences of BackJump and BackTrack:

• BackTrack undoes the last decision ld, going back to the previous decision level

and adding ¬l to it.

• BackJump may jump over decision levels that are irrelevant to the conflict.

1d 2 3d 4 5d 6 ‖ 1 ∨ 2, 3 ∨ 4, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, . . . ⇒Cl [BackJump]

1d 2 5 ‖ 1 ∨ 2, 3 ∨ 4, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, . . . [1 ∨ 5]

– BackJump jumps over the decision 3d and its consequence 4, which are

totally unrelated with the reasons for the falsity of the conflicting clause

5 ∨ 6 ∨ 1.

• BackJump may analyse the reasons that produced the conflicting clause (see

further).
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BackJump vs. BackTrack

❖ To summarise the differences of BackJump and BackTrack:

• BackTrack undoes the last decision ld, going back to the previous decision level

and adding ¬l to it.

• BackJump may jump over decision levels that are irrelevant to the conflict.

1d 2 3d 4 5d 6 ‖ 1 ∨ 2, 3 ∨ 4, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, . . . ⇒Cl [BackJump]

1d 2 5 ‖ 1 ∨ 2, 3 ∨ 4, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, 5 ∨ 6 ∨ 1, . . . [1 ∨ 5]

– BackJump jumps over the decision 3d and its consequence 4, which are

totally unrelated with the reasons for the falsity of the conflicting clause

5 ∨ 6 ∨ 1.

• BackJump may analyse the reasons that produced the conflicting clause (see

further).

❖ Conflict-driven learning:

• To prevent future similar conflicts, backjump clauses (also called lemmas) may be

added to the formula being handled.
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Modern DPLL Systems with Learning

❖ Learn:

M ‖ F ⇒M ‖ F, C if

{

all atoms of C occur in F or in M

F |= C

❖ The clauses to learn may be, e.g., backjump clauses used in BackJump.

❖ An example:

1d 2 3d 4 5d 6 ‖ 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒L [BackJump]

1d 2 5 ‖ 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒L [Learn]

1d 2 5 ‖ 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2, 2 ∨ 5
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Modern DPLL Systems: Forgetting

❖ Forget:

M ‖ F, C ⇒M ‖ F if
{

F |= C

❖ Forgetting is applied to reduce the number of clauses to deal with.

❖ Typically (though not only), some learnt lemmas may be removed when they become

less useful.

• To detect such situations, notions of relevance or activity may be used (in the latter

case, one can, e.g., monitor the number of unit propagations or conflicts in which

a clause was recently involved).

❖ An example:

1d 2 5 ‖ 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2, 2 ∨ 5 ⇒L [Forget]

1d 2 5 ‖ 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2

1d 2 3d 4 5d 6
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Modern DPLL System with Restart

❖ Restart:
M ‖ F ⇒ ∅ ‖ F

❖ Applied when the search is not making enough progress according to some measure.

❖ The additional knowledge of the search space compiled into the newly learned lemmas

will lead the heuristics for Decide to behave differently, possibly making the procedure to

explore the search space in a more compact way.

❖ To ensure termination, the number of derivation steps between restarting is strictly

increasing.

❖ An example:

1d 2 3d 4 5d 6 ‖ 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒R [BackJump]

1d 2 5 ‖ 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒R [Learn]

1d 2 5 ‖ 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2, 2 ∨ 5 ⇒R [Restart]

∅ ‖ 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2, 2 ∨ 5
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SMT Solving
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Motivation

❖ For many applications, a logic that is richer than propositional logic is needed.

❖ Therefore, using the apparatus of first-order logic (FOL) or even higher-order logics

(HOL) becomes necessary, enabling us to use various interesting theories such as:

• difference logic, equality with uninterpreted functions, integer linear arithmetics,

real arithmetics, Presburger arithmetics, WSkS, theories of lists, arrays, etc.

❖ To deal with at least some formulae of the above kind, SMT solving, i.e., checking

satisfiability modulo theories, extends SAT solving by checking satisfiability of first-order

formulae with equality and atoms from various first-order theories (usually decidable ones

are only allowed), in some cases even with quantifiers (although their support is limited).

❖ We restrict ourselves to formulae without quantifiers. Then, the only syntactic

difference from the purely propositional case is that we consider the set P to contain

equality and atomic formulae from various first-order logical theories.

❖ There exist other approaches for checking satisfiability of first-order formulae (e.g., fully

automated first-order theorem proving implemented, for instance, in Vampire), which may

be, e.g., better in dealing with quantifiers.

❖ Decision procedures for higher-order logics (such as WSKS, MSO) do also exist (e.g.,

MONA based on tree automata).
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First-Order Theories

❖ For the formulae whose satisfiability is to be checked, the same definitions and

notations as in the case of propositional logic will be used with the only difference: the set

P over which formulae are built is a countable set of first-order atomic formulae.

❖ A theory T is a set of closed first-order formulae (axioms). A formula F is T -satisfiable

if F ∧ T is satisfiable in the first-order sense. Otherwise, F is T -unsatisfiable.

❖ Similarly as before, M |= F denotes that an assignment M is a propositional model of

a formula F (atomic formulae are viewed as propositional symbols: the theory is ignored).

❖ If M |= F ∧ T , then M is said to be a T -model of F .

❖ Let F,G be two formulae. If F ∧ ¬G is T -unsatisfiable, then F entails G in T (written

F |=T G). A theory lemma is a clause C such that ∅ |=T C.

❖ The SMT problem for a theory T is the problem of determining, given a formula F ,

whether F is T -satisfiable.
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First-Order Theories

❖ Common theories ("logics") defined by SMT-LIB:

• QF_LRA (quantifier-free linear real arithmetic), QF_LIA (. . . integer arithmetic)

2x− y ≤ 2 ∧
(

y + 2z = 3y ∨ (2y + 2x 6= 3z → 3x = 3y + z)
)

• LRA (quantified linear real arithmetic), LIA (. . . integer arithmetic)

∃f∀x

(

x ≥ f →
(

∃y, z(x = 13y + 14z)
)

)

• QF_SLIA (theory of strings with integer arithmetics)

v · u · w = u · v · w → v ∈ α
∗ ∧ u ∈ α

∗

u · w = x ∧ str .contains(@fit.vut.cz, x) ∧ str .at(x, str .len(x)− 3) = a

• QF_UF (theory of uninterpreted functions)

x1 6= x2 ∧ g(x1) = x3 ∧ (f(x1) = g(g(x3))→ x1 = x3) ∧ g(x3) = x1

• QF_ALIA (theory of arrays with integers)
(

(a[i]← j)[i] = k
)

→ j = k

• theory of (fixed-size) bitvectors (QF_BV), integer difference logic (QF_IDL), nonlinear

arithmetic (QF_NIA), and many more.
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The Eager SMT Approach

❖ The idea of eager techniques is to take advantage of the power of existing SAT-solvers.

The main steps of the approach are:

1. Translate the input formula F into a satisfiability-preserving propositional formula F ′.

2. Ask a SAT-solver whether F ′ is satisfiable.

For details, see study literature.

❖ However, this approach is not often used in practice since:

• the translations are specific for each theory,

• the technique may run out of memory or time quickly on many practical problems,

• an alternative lazy approach can perform several orders of magnitudes faster.
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The Lazy SMT Approach

❖ Lazy techniques split tasks of the decision procedure into two co-operating components:

• a propositional SAT-solver, which deals with the boolean skeleton of the given

formula and views atomic formulae as simple propositional symbols, and

• theory solvers (T -solvers), which implement decision procedures for the given

theories T . It is sufficient to consider that a T -solver is only able to decide

satisfiability of a conjunction of atomic formulae in T .

❖ The first step is to build a dictionary of atomic predicates that appear in the given

formula, recognising their positive and negative appearances.

❖ An example. Is F : (a > 3) ∧ (a ≤ 3 ∨ a < 1 ∨ a > 2) satisfiable in DL over integers?

•
a > 3 a ≤ 3 a < 1 a > 2

p1 ¬p1 p2 p3

• The SAT-solver views the formula as p1 ∧ (¬p1 ∨ p2 ∨ p3).

❖ To switch between the propositional and theory views, functions T and P will be used.

• E.g., T (p1 ∨ p2) = (a > 3 ∨ a < 1) and P(a > 3 ∨ a < 1) = (p1 ∨ p2).

SAT and SMT Solving – p.31/??



The Lazy SMT Algorithm

❖ Given an input formula F , a basic version of the lazy SMT approach uses the following

interaction of a SAT-solver and a T -solver (assume that a single theory is involved):

1. A SAT-solver checks if P(F ) is satisfiable. If P(F ) is unsatisfiable, then F is

T -unsatisfiable, and the procedure terminates. Otherwise, P(F ) is satisfiable, and

the procedure continues by the next step.

2. Let M be the satisfying assignment given by the SAT-solver (M |= P(F )). The

theory solver checks whether T (M) is T -satisfiable. If T (M) is T -satisfiable, F is

T -satisfiable, and the procedure terminates. Otherwise, T (M) is T -unsatisfiable,

and the procedure continues by the next step.

3. The T -solver provides a theory lemma (a clause C = ¬l1 ∨ . . . ∨ ¬lm such that

l1, . . . , lm appear in T (M) and ∅ |=T C; in an extreme case, C = ¬T (M)) which is

added to the set of clauses. Then, the SAT-solver is restarted, and the whole
process repeated from Step 1.

❖ Having more theories requires a more complicated algorithm combining them: typically,

the Nelson-Oppen combination procedure (or some of its variants) is used.

• We will briefly get to Nelson-Oppen at the end of the lecture – more details are

beyond the scope of the lecture.
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Overview of a modern SMT solver

Theory lemma:
¬l2 ∨ ¬l4

x1 6= x2 ∧ ( f(x1) > f(x2) ∨ 2x1 + x2 < x3 ) ∧ ( f(x1) < f(x2) ∧ f(x1 + x2) = x1 )

Purification

Propositional
abstraction

SAT Solver

Propositions
to atoms

EUF Solver

Arith Solver

•

••

•

•

x1 6= x2 ∧ ( a1 > a2 ∨ 2x1 + x2 < x3 ) ∧ ( a1 < a2 ∧ f(a3) = x1 )

∧ a1 = f(x1) ∧ a2 = f(x2) ∧ a3 = x1 + x2

¬l1 ∧ ( l2 ∨ l3 ) ∧ ( l4 ∧ l5 ) ∧ l6 ∧ l7 ∧ l8

Model : { ¬l1 , l2 , l4 , l6 , l7 , l8 }

a1 > a2 ∧ a1 < a2 ∧ a3 = x1 + x2

x1 6= x2 ∧ a1 = f(x1) ∧ a2 = f(x2)

Eq. propagation

T −solvers

SAT + model

•
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Lazy SMT: An Illustration

❖ An example. Is F : (a > 3) ∧ (a ≤ 3 ∨ a < 1 ∨ a > 2) satisfiable?

•
a > 3 a ≤ 3 a < 1 a > 2

p1 ¬p1 p2 p3

(a > 3) ∧ (a ≤ 3 ∨ a < 1 ∨ a > 2)

p1 ∧ (¬p1 ∨ p2 ∨ p3)

• Iteration 1. P(F ) : p1 ∧ (¬p1 ∨ p2 ∨ p3)

1. The SAT-solver finds out that F is satisfiable.

2. The SAT-solver comes with M = {p1, p2}. The T -solver finds out that

T (M) = a > 3 ∧ a < 1 is T -unsatisfiable.

3. The T -solver returns a theory lemma L = a ≤ 3 ∨ a ≥ 1, which is added as

a new clause to the formula (F := F ∧ L).

• Iteration 2. P(F ) : p1 ∧ (¬p1 ∨ p2 ∨ p3) ∧ (¬p1 ∨ ¬p2)

1. The SAT-solver finds out that F is satisfiable.

2. The SAT-solver comes with M = {p1,¬p2, p3}. The T -solver confirms that

T (M) = a > 3 ∧ a ≥ 1 ∧ a > 2 is T -satisfiable and the procedure answers

that F is satisfiable (for a > 3, after simplification).
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Lazy SMT: Extensions

❖ To summarise, there are two causes for the current assignment M not to be satisfying

during a run of an SMT decision procedure:

• standard propositional (detected by BackJump and Fail rules), or

• theory-related: a contradiction occurs in the current assignment. This is not (and

cannot be) detected by a SAT-solver itself, and so a T -solver must be used to
discover it.

❖ There exist various extensions of the basic lazy SMT, e.g.,:

• On-line SAT-solver. The presented version of a lazy procedure is off-line, meaning

that the procedure is restarted when a new lemma is learned. Alternatively, in an

on-line approach, the SAT-solver continues from the current assignment after

learning a lemma (and since the learned lemma is always a conflicting clause, it

can proceed either by applying the BackJump or Fail rule).

• Incremental SAT-solver. The SAT-solver can query a T -solver continuously during

the construction of an assignment M about its T -satisfiability. In other words, it

does not have to wait until a propositionally satisfying assignment is found.

Depending on the cost of such queries, they can be made after each step of the

SAT-solver or at regular intervals.
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Theory Propagation

❖ Theory propagation is a principle which will later be incorporated into abstract DPLL(T)

systems: an extension of abstract DPLL systems for SMT procedures. Similarly as in the

propositional DPLL, definitions will be made in terms of rules.

❖ Up to now, the T -solver has been used to validate that an assignment M is

T -satisfiable only. However, it can also be used to guide the SAT-solver. This is achieved

by the following rule.

❖ TheoryPropagate:

M ‖ F ⇒Ml ‖ F if











M |=T l

l or ¬l occurs in F

l is undefined in M

❖ In a state M ‖ F , the rule allows to add all (or at least some) literals l1, . . . , lm
undefined in M where li or ¬li occurs in F and M |=T li, i.e., literals which are entailed

in T by the current assignment. Then, the system can move to state Ml1, . . . , lm ‖ F .

❖ Depending on how expensive the theory propagation is (for a specific solver), it can be

performed exhaustively (performs all possible theory propagations) or non-exhaustively

(propagates only literals which are cheap to compute).

SAT and SMT Solving – p.36/??



Abstract DPLL(T)

❖ SMT solving can be formalised in terms of abstract DPLL(T) systems that extend

abstract DPLL systems.

❖ The rules of abstract DPLL(T) systems can be split into three groups:

• DPLL rules: Decide, Fail, UnitPropagate, Restart, which are exactly the same as

in SAT solving. (Note: no PureLiteral due to having to consider the theory too.)

• DPLL/theory rules: modified Learn, Forget, and BackJump rules where some of
the original propositional entailments are replaced by theory entailment.

• Theory rules: the TheoryPropagate rule.

❖ Note that each propositional entailment is a theory entailment, and so purely

propositional reasoning may still be used in the modified BackJump, Learn, and Forget

– apart from that, theory reasoning is allowed too (used, e.g., to learn theory lemmas or

theory-dependent backjump clauses).

❖ We denote derivations in the system with all the above rules⇒FT (Full DPLL Modulo

Theories).
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Abstract DPLL(T)

❖ T − BackJump:

MldN ‖ F,C ⇒Ml′ ‖ F,C if



























MldN |= ¬C, and there is

some clause C ′ ∨ l′ such that:

F,C |=T C ′ ∨ l′ and M |= ¬C ′,

l′ is undefined in M, and

l′ or ¬l′ occurs in F or in MldN

❖ T − Learn:

M ‖ F ⇒M ‖ F,C if

{

all atoms of C occur in F or in M

F |=T C

• Applied in association with T −BackJump or when a satisfying M is

T -inconsistent and a theory lemma is to be added.

❖ T − Forget:

M ‖ F,C ⇒M ‖ F if
{

M |=T C
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Theory Propagation: Example 1

❖ Is the following difference logic formula satisfiable?

ϕ : ((x > 2) ∨ (x < −15)) ∧ (x > −10) ∧ ((x < 0) ∨ (x > 0))

Let us abbreviate ϕ as (ϕ1 ∨ ϕ2) ∧ ϕ3 ∧ (ϕ4 ∨ ϕ5).

∅ ‖ ϕ ⇒FT [UnitPropagate ϕ3]

x > −10 ‖ ϕ ⇒FT [TheoryPropagate ϕ2]

x > −10, x < −15 ‖ ϕ ⇒FT [UnitPropagate ϕ1]

x > −10, x < −15, x > 2 ‖ ϕ ⇒FT [TheoryPropagate ϕ4]

x > −10, x < −15, x > 2, x < 0 ‖ ϕ ⇒FT [UnitPropagate ϕ5]

x > −10, x < −15, x > 2, x < 0, x > 0 ‖ ϕ

SAT and SMT Solving – p.39/??



Theory Propagation: Example 2

❖ Consider the EUF logic and a clause set F containing:

. . .

(1) (a = b) ∨ (g(a) 6= g(b))

(2) (h(a) = h(c)) ∨ p

(3) (g(a) = g(b)) ∨ ¬p

. . .

❖ Let the DPLL(T) procedure be in a state: M, c = b, f(a) 6= f(b) ‖ F .

❖ Consider the derivation:

Step New Literal Reason

(I) Decide h(a) 6= h(c)

(II) TheoryPopagate a 6= b since h(a) 6= h(c) ∧ c = b |=T a 6= b

(III) UnitPropagate g(a) 6= g(b) because of a 6= b and (1)

(IV) UnitPropagate p because of h(a) 6= h(c) and (2)

❖ Now, Clause (3) is conflicting. A possible backjump clause is, e.g., h(a) = h(c) ∨ c 6= b.

SAT and SMT Solving – p.40/??



Difference Logic

❖ In the theory of difference logic (DL), atomic formulae are syntactically restricted to the

form a− b ≤ k where a, b are variables and k is a constant. The difference logic can be

interpreted over integers, rationals, or reals.

❖ Examples:

• ϕ1 : a− b ≤ −1 ∧ b− a ≤ 1

• ϕ2 : a− b ≤ −1 ∧ b− c ≤ −2 ∧ c− a ≤ −3

❖ A decision procedure – given a conjunctive DL formula:

• construct a weighted graph

with an edge a
k
−→ b for each

atomic formula a− b ≤ k,

• the formula is satisfiable iff
there is no cycle with
a negative accumulated

weight in the graph.

a b

c

−1

−2−3

a

b

−11Gϕ2
: Gϕ1

:

❖ Constraints of the form a ≤ k can be added by transforming them to a− zero ≤ k and

subsequently shifting a satisfying solution (if there is one) such that zero gets evaluated
to 0.
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The EUF Theory

❖ The theory of equality with uninterpreted functions (EUF) consists of the following

axioms:

Ar : ∀x.x = x (reflexivity)

As : ∀x, y.x = y → y = x (symmetry)

At : ∀x, y, z.x = y ∧ y = z → x = z (transitivity)

Ac1 : for each positive integer n and n-ary function symbol f ,

∀x1, . . . , xn, y1, . . . , yn.x1 = y1 ∧ · · · ∧ xn = yn (function

→ f(x1, . . . , xn) = f(y1, . . . , yn) congruence)

Ac2 : for each positive integer n and n-ary predicate symbol p,

∀x1, . . . , xn, y1, . . . , yn.x1 = y1 ∧ · · · ∧ xn = yn (predicate

→ p(x1, . . . , xn) = p(y1, . . . , yn) congruence)

❖ Equality = is an interpreted predicate symbol.

❖ Other symbols are uninterpreted.

❖ An example of a lemma: a = b ∧ b = c→ g(f(a), b) = g(f(c), a).
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The EUF Theory: An Example

❖ Show that ϕ : (b = c) ∧ (f(b) = c) ∧ (g(f(c)) = a) ∧ (a 6= g(b)) is unsatisfiable.

• Assume ϕ is satisfiable, i.e., there is an assignment σ under which ϕ evaluates to
true.

1. σ |= ϕ (assumption)

2. σ |= b = c (1,∧)

3. σ |= f(b) = c (1,∧)

4. σ |= g(f(c)) = a (1,∧)

5. σ |= ¬(a = g(b)) (1,∧)

6. σ |= f(b) = f(c) (2, congruence)

7. σ |= f(c) = f(b) (6, symmetry)

8. σ |= f(c) = c (7,3, transitivity)

9. σ |= c = f(c) (8, symmetry)

10. σ |= b = f(c) (2,9, transitivity)

11. σ |= g(b) = g(f(c)) (10, congruence)

12. σ |= g(b) = a (11,4, transitivity)

13. σ |= a = g(b) (12, symmetry)

14. σ 6|= a = g(b) (5, ¬)

• Lines 13 and 14 are contradictory, therefore, ϕ is unsatisfiable.

• An example of entailment:

– (b = c) ∧ (f(b) = c) ∧ (g(f(c)) = a) |=T (a = g(b)).

❖ EUF can be decided by computing the congruence closure of all equivalences and

checking that it does not contradict with any inequality.
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Combining Theories
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The Nelson-Oppen Method

❖ Assume theories with disjoint sets of function and predicate symbols (up to equality).

❖ Variables used in atoms falling into different theories may be shared.

❖ The very basic idea of the Nelson-Oppen theory combination method is the following:

• T -solvers must report all equalities among variables.

• When the given formula is propositionally satisfiable and the derived assignment

M is T -consistent for each involved theory T and the part of M which involves

atoms of T , all equalities discovered in each theory are added within the theories in
which they were not discovered, and the process is re-run till either no new

equalities are found or a conflict is found.

❖ If a contradiction is ever found, then the formula is clearly unsatisfiable. For

satisfiability, the following conditions suffice:

• Theories must admit countably infinite models.

• Theories must be convex.

– A theory is convex iff whenever a satisfiable conjunction of literals entails

a disjunction of equalities of variables, then it entails one of the equalities.

– Biggest obstacle in practice, yet applicable for many common theories.

❖ For more details, see study literature
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