Detail předmětu
Vysoce náročné výpočty (v angličtině)
VNVe Ak. rok 2023/2024 letní semestr 5 kreditů
Předmět je zaměřen na praktické metody řešení náročných vědecko-technických úloh. Provádí se srovnání seriového a paralelního výpočtu a hodnotí se stabilita numerického výpočtu. Uvádí se speciální metoda paralelních výpočtů, založená na využití diferenciálního počtu. Pro numerické řešení diferenciálních rovnic se používá originální metoda založená na přímém využití Taylorovy řady. K dispozici je simulační jazyk TKSL s rovnicovým zápisem zadaného problému. Uvádí se těsná souvislost rovnicového a blokového zápisu a analyzuje se blokové schéma jako datový vstup. Analyzují se následující technické problémy. Součástí předmětu je návrh specializovaných architektur pro numerické řešení diferenciálních rovnic.
Garant předmětu
Koordinátor předmětu
Jazyk výuky
Zakončení
Rozsah
- 26 hod. přednášky
- 26 hod. pc laboratoře
Bodové hodnocení
- 60 bodů závěrečná zkouška (písemná část)
- 20 bodů půlsemestrální test (písemná část)
- 20 bodů laboratoře
Zajišťuje ústav
Přednášející
Cvičící
Cíle předmětu
Získat přehled a základy praktického využití paralelních a kvaziparalelních metod numerického řešení náročných vědeckotechnických úloh.
Schopnost transformovat vědecko-technické úlohy na systém diferenciálních rovnic. Schopnost řešit rozsáhlé systémy diferenciálních rovnic s využitím simulačního jazyka TKSL.
Schopnost provádět paralelní a kvaziparalelní výpočty rozsáhlých úloh.
Literatura studijní
- Hairer, E., Norsett, S. P., Wanner, G.: Solving Ordinary Differential Equations I, vol. Nonstiff Problems. Springer-Verlag Berlin Heidelberg, 1987.
- Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, vol. Stiff And Differential-Algebraic Problems. Springer-Verlag Berlin Heidelberg, 1996.
- Butcher, J. C.: Numerical Methods for Ordinary Differential Equations, 3rd Edition, Wiley, 2016.
- Lecture notes written in PDF format,
- Source codes of all computer laboratories
Literatura referenční
- Kunovský, J.: Modern Taylor Series Method, habilitation thesis, VUT Brno, 1995
- Hairer, E., Norsett, S. P., Wanner, G.: Solving Ordinary Differential Equations I, vol. Nonstiff Problems. Springer-Verlag Berlin Heidelberg, 1987.
- Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, vol. Stiff And Differential-Algebraic Problems. Springer-Verlag Berlin Heidelberg, 1996.
- Shampine, L. F.: Numerical Solution of ordinary differential equations, Chapman and Hall/CRC, 1994
- Strang, G.: Introduction to applied mathematics, Wellesley-Cambridge Press, 1986
- Meurant, G.: Computer Solution of Large Linear System, North Holland, 1999
- Saad, Y.: Iterative methods for sparse linear systems, Society for Industrial and Applied Mathematics, 2003
- Burden, R. L.: Numerical analysis, Cengage Learning, 2015
- LeVeque, R. J.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-dependent Problems (Classics in Applied Mathematics), 2007
- Strikwerda, J. C.: Finite Difference Schemes and Partial Differential Equations, Society for Industrial and Applied Mathematics, 2004
- Golub, G. H.: Matrix computations, Hopkins Uni. Press, 2013
- Duff, I. S.: Direct Methods for Sparse Matrices (Numerical Mathematics and Scientific Computation), Oxford University Press, 2017
- Corliss, G. F.: Automatic differentiation of algorithms, Springer-Verlag New York Inc., 2002
- Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Society for Industrial and Applied Mathematics, 2008
- Press, W. H.: Numerical recipes : the art of scientific computing, Cambridge University Press, 2007
Osnova přednášek
- Metodika sériového a paralelního výpočtu (zpětnovazební stabilita paralelních výpočtů)
- Extrémně přesné řešení diferenciálních rovnic metodou Taylorovy řady
- Paralelní vlastnosti metody Taylorovy řady
- Základy programování specializovaných paralelních úloh s využitím diferenciálního počtu (těsná souvislost rovnicového a blokového zápisu)
- Paralelní řešení obyčejných diferenciálních rovnic s konstatními koeficienty, knihovní podprogramy přesných výpočtů
- Adjungované diferenciální operátory a paralelní řešení diferenciálních rovnic s časově proměnnými koeficienty
- Metoda řešení rozsáhlých soustav algebraických rovnic převodem na obyčejné diferenciální rovnice
- Bairstowova metoda pro hledání kořenů algebraických rovnic vysokých stupňů
- Fourierova řada a paralelní FFT
- Simulace elektrických obvodů
- Řešení praktických problémů popsaných parciálními diferenciálními rovnicemi
- Regulační obvody
- Koncepce elementárního procesoru specializovaného paralelního výpočetního systému
Osnova počítačových cvičení
- Simulační systém TKSL
- Testovací příklady řešení exponenciálních funkcí
- Diferenciální homogenní rovnice 1. řádu
- Diferenciální homogenní rovnice 2. řádu
- Generování funkcí času
- Generování funkcí obecné proběnné
- Adjungované diferenciální operátory
- Soustava lineárních algebraických rovnic
- Modelování elektronických obvodů
- Rovnice vedení tepla
- Vlnová rovnice
- Laplaceova rovnice
- Regulační obvody
Průběžná kontrola studia
Půlsemestrální a semestrální písemná zkouška.
V průběhu semestru budou probíhat dobrovolná počítačová cvičení. Libovolné cvičení bude možnost v závěrečných týdnech semestru nahradit.
Zařazení předmětu ve studijních plánech
- Program IT-MGR-2 (anglicky), obor MGMe, libovolný ročník, povinně volitelný skupina M
- Program MIT-EN (anglicky), libovolný ročník, volitelný