

The project Kaldi Open source speech recognition

Karel Vesely

Speech@FIT, BUT

ZRE, Brno, 3.5.2017

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

What is Kaldi?

- Wiki: A legendary Ethiopian goatherd who tried the coffee seeds after seeing the 'energetic jumping goats' eating it.
- Github: Open-source toolkit for building speech recognition systems.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A bit of history...

 2009: Summer workshop at Johns Hopkins University (Baltimore, USA)

 ASR team worked on Sub-space Gaussian Mixture Models (part of model parameters is shared across languages)

A toolkit was needed to integrate the new model!

2010: Dan Povey started coding Kaldi at Microsoft

2010, 2011, 2012, 2013: Kaldi development workshops

- several weeks of summer coding in 'zámeček' at FIT
- international team of self-funded volunteers (USA, Canada, China, India, Germany, Czech Republic, ...)
- 2011: Kaldi toolkit presented at conferences ICASSP (Prague), ASRU (Hawaii)
- 2012: Dan Povey joins JHU in Baltimore (leaving Microsoft)
- 2015: Kaldi moved from SourceForge to GitHub

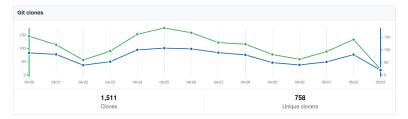
Who is this 'Dan Povey'?

The '#1', i.e. the main architect of Kaldi.

■ He is believed to write C++ code at the speed of light!

3

Kaldi = GitHub project¹, it consists of:


- Set of command-line programs for training and representing speech recognition models (C++).
- example recipes = set of "standard experiments" on cluster computer (BASH, perl, awk, SGE cluster)
- Documentation²: Doxygen with tutorial, topic-based pages and C++ code reference
- Support: discussion forum (response usually in < 1 day)

¹https://github.com/kaldi-asr/kaldi

²http://kaldi-asr.org/doc/

What is Kaldi? III.

Github traffic stats from last 14-days (the blue curves are unique 'cloners' and 'visitors'),

 The recipes are main strength of Kaldi compared to other toolkits! (HTK, Sphinx, Julius, ...)

Toy examples: yes/no, tidigits,

Free-databases: AMI meetings (80h), TED-LIUM talks (120h), librispeech, voxforge, vystadial_cz

■ The standard tasks (from easy to difficult, +/- paid data):

- Read speech: Resource Management (3h, WER=1.5%), TIMIT (3h), Wall Street Journal (80h, WER³=4%),
- Conversational telephone speech: Switchboard (300h, WER=10%), Fisher (2000h)
- Spontaneous 'distant microphone-array' speech: AMI meetings (80h captured by 8 mic-array WER=36%, with 'close-talk mic' we get WER=23%)

Why is Kaldi good for research?

Experiments are very easy to reproduce: (all researchers can work with same baseline systems)

No need to implement everything from scratch

The toolkit is easy to extend or modify

- It is a community project, anybody can:
 - propose a change
 - send bugfix
 - fork and create derived project

License: Apache v2.0, a very liberal legal framework: allows modifications and commercial use.

(ロ) (同) (三) (三) (三) (○) (○)

Speech recognition research ecosystem

Researchers:

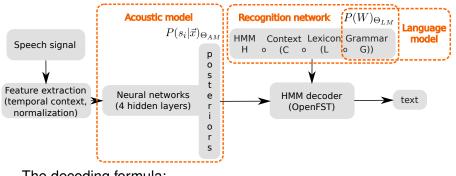
- are using the toolkit
- some are contributors

Big companies:

- some use Kaldi
- all have access to the code

Start-ups:

- getting free ASR technology
- creating new ASR applications


Big companies doing speech research: Nuance, IBM, Google, Microsoft, Apple, Amazon, Baidu, Telefonica, Samsung. Many have open work positions... Speech recognition:

- HMM decoder using WFST transducers
- keyword search based on WFSTs
- Acoustic models: GMM, SGMM, DNN (nnet1,2,3) (DNN types: feed-forward, Convolutional, LSTM, BLSTM)

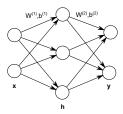
(日) (日) (日) (日) (日) (日) (日)

- Language models: N-GRAM, RNNLM
- speaker adaptation techniques (CMVN, VTLN, fMLLR, iVector based)
- sequence-discriminative training bMMI, sMBR (global optimization instead of 'per-frame' training)

Speech recognition: A hybrid approach

The decoding formula:

 $\tilde{W} = \operatorname*{argmax}_{W} P(W|X)_{\Theta} \propto \operatorname*{argmax}_{W} P(X|\vec{s}_{W})_{\Theta_{AM}} P(W)_{\Theta_{LM}}$


We use Bayes rule to convert NN posteriors into likelihoods:

$$P(\vec{x}|s_i)_{\Theta_{AM}} = P(s_i|\vec{x})_{\Theta_{AM}} / P(s_i)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Acoustic model: Neural network

Example: feed-forward neural network with one hidden layer,

x input vector
 h hidden-layer vector
 y output vector

 $\mathbf{W^{(1)}, W^{(2)}}$ matrices of trainable weights $\mathbf{b^{(1)}, b^{(2)}}$ vectors of trainable biases

(日) (日) (日) (日) (日) (日) (日)

 $\begin{array}{ll} \text{Sigmoid,} & \text{Softmax,} \\ h_i^{(1)} = \sigma(a_i^{(1)}) = \frac{1}{1 + \exp(-a_i^{(1)})} & y_i = \frac{\exp(a_i^{(2)})}{\sum_j \exp(a_j^{(2)})} \,, \; \sum_i y_i = 1 \end{array}$

Forward pass,

$$\mathbf{y} = \operatorname{softmax} \left(\mathbf{W}^{(2)} \sigma \left(\mathbf{W}^{(1)} \mathbf{x} + \mathbf{b}^{(1)} \right) + \mathbf{b}^{(2)} \right)$$

How does it look practically? (layer = linear transform + non-linearity)

```
number-of-parameters 9.73591 millions
component 1 : <AffineTransform>, input-dim 567, output-dim 1024
component 2 : <Sigmoid>, input-dim 1024, output-dim 1024
component 3 : <AffineTransform>, input-dim 1024, output-dim 1024
component 4 : <Sigmoid>, input-dim 1024, output-dim 1024
component 5 : <AffineTransform>, input-dim 1024, output-dim 1024
component 6 : <Sigmoid>, input-dim 1024, output-dim 1024
component 7 : <AffineTransform>, input-dim 1024, output-dim 1024
component 8 : <Sigmoid>, input-dim 1024, output-dim 1024
component 9 : <AffineTransform>, input-dim 1024, output-dim 1024
component 9 : <AffineTransform>, input-dim 1024, output-dim 5859
component 10 : <Softmax>, input-dim 5859, output-dim 5859
```

4 hidden layers, each composed of 1024 neurons,

```
■ 5859 classes on the output
(triphone states = acoustic units)
```

Acoustic model: Training the Neural Network

- supervised training of a classifier (input features classified into triphone tied-states),
- training labels are generated by 'aligning' the transcriptions to the speech signal with an existing model,

training algorithm: mini-batch Stochastic Gradient Descent:

(日) (日) (日) (日) (日) (日) (日)

$$\vec{w}_{t+1} = \vec{w}_t - \eta \nabla E(\vec{w}_t)$$

 avoiding over-training by reducing the learning rate, we observe accuracy on held-out set ■ in research, for publishing results in conference articles,

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

- for cooperation with international colleagues,
- in various funded research projects,

 Play with the toy examples: yesno, voxforge, vystadial_cz
 Think of a creative 'speech-based' application (pre-built models are available

http://kaldi-asr.org/downloads/all/).

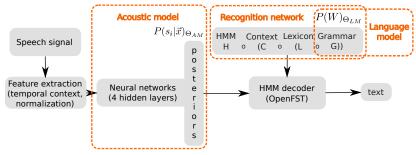
(ロ) (同) (三) (三) (三) (○) (○)

Useful links

GitHub project:

https://github.com/kaldi-asr/kaldi Documentation:

http://kaldi-asr.org/doc/


Support forum:

https://groups.google.com/forum/#!forum/kaldi-help

Other resources:

- http://www.danielpovey.com/kaldi-lectures.html
- http://www.danielpovey.com/publications.html
- http://www.danielpovey.com/
- http://kaldi-asr.org

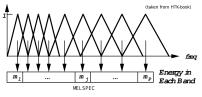
The DEMO, I.

Feature extraction:

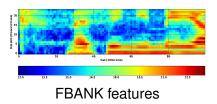
- compute-fbank-feats
- compute-pitch-feats
- paste-feats, apply-cmvn

Acoustic model evaluation: nnet-forward HMM decoder: decode-faster-mapped Showing the output: utils\int2sym.pl Show the script...

- Lexicon with 579k 'words',
- HCLG network has 1.4GBs (after LM pruning),
- Acoustic model has 9.7 million trainable parameters (feed-forward neural network with 4 hidden layers and 5862 outputs),
- On-line cepstral mean normalization,
- Acoustic-model + HMM-decoder are background processes (communicating via 'named pipes'),


(日) (日) (日) (日) (日) (日) (日)

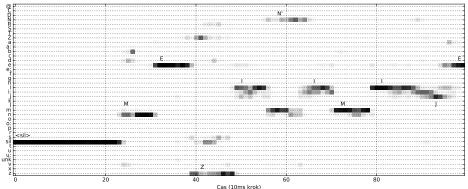
The DEMO, III., FBANK features


FBANK features = a smooth spectrogram,

- 10ms time-steps, non-uniform steps in frequency (but uniform on Mel-scale, according to which we hear),
- log of the 'power' at particular frequency as integrated with the triangular Mel-filters,
- we splice 21 FBANK frames to form the DNN input

(i.e. we take a window over 21 time-steps),

Bank of Mel-filters



(日) (日) (日) (日) (日) (日) (日)

The DEMO, IV., NN posteriors

How does the Neural Network output look like? (posterior probabilities)

For illustration we summed the 5859 outputs into 36+2 phonemes:

(日)

Let's try it out!

Hints:

- Unusual words? (science, slang, ...)
- Casual Czech? (hovorová čeština)
- Poetry? (Polednice, Máj, ...)
- Classical books? (Babička, ...)

For optimal performance, please put the mike right at your lips.

(日) (日) (日) (日) (日) (日) (日)

The end

Thank you!

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @