
BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

PHD THESIS

Brno, 2023 Ing. Jitka Kocnová

BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

EVOLUTIONARY SYNTHESIS OF COMPLEX DIGITAL
CIRCUITS
EVOLUČNÍ SYNTÉZA KOMPLEXNÍCH ČÍSLICOVÝCH OBVODŮ

PHD THESIS
DISERTAČNÍ PRÁCE

AUTHOR Ing. JITKA KOCNOVÁ
AUTOR PRÁCE

SUPERVISOR Doc. Ing. ZDENĚK VAŠÍČEK, Ph.D.
ŠKOLITEL

BRNO 2023

Abstract
The research presented in this thesis focuses on the field of evolutionary optimization of
complex combinational circuits. The work begins with a study of the existing conventional
and nonconventional approaches to the optimization of combinational circuits. Features and
issues connected with the internal circuit representations commonly used by present syn-
thesis tools. Boolean networks and their scalability were discussed. Attention was also paid
to the evolutionary synthesis, with focus on the CGP (Cartesian Genetic Programming).

A new approach to the evolutionary optimization of combinational circuits was pro-
posed. By extracting a sub-circuit containing a suitable number of gates of the original
circuit and by optimizing this sub-circuit by the CGP, it was possible to reduce the number
of gates of the circuit significantly more than by optimizing the whole circuit by the CGP.
For the extraction phase, three methods were proposed. The first method is based on the
cut computing algorithm. This method was able to reduce the number of gates of every
benchmark circuit and it overcame the results of the globally working CGP in majority
of cases. The second method is based on the windowing algorithm. This allows to ex-
pand the sub-circuit selection with the gates in the output direction of the root node of
the selection and not only with the gates in its input direction. This method significantly
improved the results obtained by using the cut-based method. It also overcame the issue of
the cut-based method with selecting the sub-circuit near the primary inputs of the circuit
and thus creating a selection too small for a subsequent optimization. The third method is
based on the reconvergent-paths selection algorithm. The existence of a reconvergent-path
in the sub-circuit increases the probability of presence of don’t care nodes and thus the
higher efficiency of the optimization. Also, an evolutionary optimization method targeting
the non-uniform delay on the sub-circuit’s inputs. By using this method, it is possible to
extract and optimize a sub-circuit without an influence on the delay of the whole circuit.

By applying the principle of local evolutionary optimization, a significantly better gate
reduction of the circuits was achieved then by applying the CGP optimization on whole cir-
cuits. However, it is important to choose the sub-circuit’s root node carefuly with respect to
its position in the circuit. Also, it is necessary to set the parameters of evolution, extraction
and the whole optimization process carefully (e.g. the number of gates in each sub-circuit,
number of CGP generations and number of sub-circuits that should be optimized).

Abstrakt
Tato dizertační práce prezentuje výzkum v oblasti evoluční optimalizace komplexních kom-
binačních obvodů. Práce začíná studiem existujících konvenčních i nekonvenčních přístupů
k optimalizaci kombinačních obvodů. Byly analyzovány vlastnosti a problémy spjaté s ne-
jčastěji používanými interními reprezentacemi v současných syntézních nástrojích. Dále
byly představeny Booleovské sítě a možnosti jejich škálování. Pozornost byla také věnována
evoluční syntéze logických obvodů, s důrazem na CGP (Kartézské Genetické Programování).

Byl navržen nový přístup k evoluční optimalizaci kombinačních obvodů. Extrahováním
částí obvodů o vhodném počtu hradel a jejich následnou optimalizací pomocí CGP bylo
dosaženo větší redukce počtu hradel v obvodech, než tomu bylo při optimalizaci celých ob-
vodů pomocí CGP. K extrakci částí obvodů byly navrženy tři metody. První je založena na
algoritmu vytvářejícím tzv. řezy. Tato metoda byla schopna optimalizovat každý testovací
kombinační obvod a ve většině případů překonala výsledky dosažené optimalizací celých
obvodů pomocí CGP. Druhá extrakční metoda je inspirována windowing algoritmem, díky
čemuž je možné do výběru zahrnout i hradla nacházející se ve směru výstupů kořenového

hradla výběru, a ne jen hradla ve směru jeho vstupů. Tato metoda výrazně vylepšila
výsledky dosažené pomocí metody založené na tvorbě řezů. Metoda taktéž umožňuje,
narozdíl od metody první, extrahovat část obvodu z jakéhokoli jeho místa, aniž by došlo
k výběru příliš malého počtu hradel nevhodného k následné optimalizaci. Třetí metoda je
založena na principu vyhledávání rekonvergentních cest v obvodech. Přítomnost rekonver-
gentní cesty ve vybrané části obvodu zvyšuje pravděpodobnost přítomnosti redundantních
hradel a tím i vyšší efektivitu navrhovaného optimalizačního procesu. Byla také navržena
a implementována evoluční optimalizační metoda zohledňující zpoždění obvodu. Touto
metodou je možné extrahovat a optimalizovat část obvodu, aniž by celkové zpoždění ob-
vodu přesáhlo požadovanou mez.

Pomocí principu lokální evoluční optimalizace bylo dosaženo lepších výsledků než při
evoluční optimalizaci celých obvodů, čímž byla potvrzena hypotéza. Je však důležité vhodně
zvolit umístění kořenového hradla výběru, vzhledem k jeho pozici v obvodě. Taktéž je třeba
vhodně zvolit nastavení parametrů evoluce, extrakce i optimalizační metody jako celku
(např. počet hradel v extrahovaných částech obvodu, počet CGP generací a počet částí
obvodu, které projdou optimalizací).

Keywords
Evolutionary algorithms, CGP, synthesis, optimization, combinational circuits, delay.

Klíčová slova
Evoluční algoritmy, CGP, syntéza, optimalizace, kombinační obvody, zpoždění.

Reference
KOCNOVÁ, Jitka. Evolutionary synthesis of complex digital circuits. Brno, 2023. PhD
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor Doc.
Ing. Zdeněk Vašíček, Ph.D.

4

Evolutionary synthesis of complex digital circuits

Declaration
Prohlašuji, že jsem tuto dizertační práci vypracovala samostatně pod vedením pana doc.
Ing. Zdeňka Vašíčka, Ph.D. Další informace mi poskytl prof. Ing. Lukáš Sekanina, Ph.D.
Uvedla jsem všechny literární prameny, publikace a další zdroje, ze kterých jsem čerpala.

. .
Jitka Kocnová

December 4, 2023

Acknowledgements
Chci poděkovat svému školiteli Zdeňku Vašíčkovi za jeho odborné rady a velkou a vytrvalou
pomoc při tvorbě této disertační práce. Dále děkuji kolegům z ústavu za odborné konzul-
tace. Dále děkuji rodině, přátelům a známým za jejich podporu. Děkuji mému nejmilejšímu
Davidu Grocholovi za každý společný den, obejmutí a slova útěchy.

Dále děkuji následujícím projektům, v rámci kterých tato dizertační práce vznikla:

• Application-specific HW/SW architectures and their applications, FIT-S-23-8141

• Navrhování a využívání knihoven aproximativních obvodů, GA14-04197S.

• Návrh, optimalizace a evaluace aplikačně specifických počítačových systémů, FIT-S-
20-6309

• IT4Innovations excellence in science, NPU II - IT4IXS

• Rozvoj kryptoanalytických metod prostřednictvím evolučních výpočtů, GA16-08565S

• Pokročilé paralelní a vestavěné počítačové systémy, FIT-S-17-3994

• Ministerstvo školství, mládeže a tělovýchovy – INTER-COST projekt LTC18053

• AppNeCo: Aproximativní neurovýpočty, GA22-02067S

Contents

1 Introduction 3
1.1 Conventional Approaches . 4
1.2 Unconventional Approaches . 4
1.3 Research Objectives . 5
1.4 Thesis Outline . 6

2 State of the Art 7
2.1 Boolean Networks . 7
2.2 Boolean Optimization . 8
2.3 Scaling of Boolean Synthesis . 10
2.4 Evolutionary Synthesis of Logic Circuits . 12
2.5 Cartesian Genetic Programming . 12

3 Research Summary 15
3.1 Methodology . 15

3.1.1 Evolutionary optimization . 15
3.1.2 Limiting the Scope of Boolean Networks 16
3.1.3 Targeting the Non-uniform Delay on the Sub-circuit’s Inputs 19
3.1.4 Experimental Evaluation . 22

3.2 Papers . 25
3.2.1 Paper I . 25
3.2.2 Paper II . 26
3.2.3 Paper III . 27
3.2.4 Paper IV . 28
3.2.5 Paper V . 29

3.3 List of Other Papers . 29

4 Discussion and Conclusions 31
4.1 Future Work . 32

Bibliography 33

Related Papers 40

A Towards a Scalable EA-based Optimization of Digital Circuits 40

B EA-based refactoring of mapped logic circuits 57

1

C EA-based Resynthesis: An Efficient Tool for Optimization of Digital
Circuits 63

D Resynthesis of logic circuits using machine learning and reconvergent
paths 91

E Delay-aware evolutionary optimization of digital circuits 100

2

Chapter 1

Introduction

In recent years, the electronic industry has been experiencing a large growth. Increasing
complexity of modern digital designs implies a large number of transistors in present circuits.
As there is a linear dependence between the number of tranzistors and power consumption,
limiting the dynamic as well as leakage power consumption has become one of the major
interests when designing an electronic device [12, 13, 14]. Hence, during the designing
phase, optimization of the number of components used in the final device is a crucial step.
Furthermore, the size (eg. the number of nodes and interconnecting wires of a circuit) of
each component is also important [45].

Nowadays, complex electronic problems require sophisticated solutions that can not
be handled in practice without automation. Usually, the desired device or component is
firstly described at a higher level, e.g. in a hardware description language (HDL) and then
transformed by a sequence of steps into its final circuit representation. The transformation
phase is called logic synthesis, a very complex and demanding process. It consists of a
sequence of steps which transform a high-level description into a gate-level or transistor-
level implementation based on a set of constraints and requirements. Automated logic
synthesis plays a crucial role in development of Application Specific Integrated Circuits
(ASIC), which experience an exponential growth [45].

An important part of logic synthesis is logic optimization. Its goal is to transform a
suboptimal circuit solution into an optimal gate-level implementation with respect to given
synthesis goals (eg. to reduce gate count or improve performance). Logic synthesis is not
always able to create an optimal gate-level implementation, but it can significantly improve
the efficiency and performance of a circuit. Due to the scalability issues, the problem is
typically expressed using a suitable internal representation. Then, technology mapping
tries to transpose it onto its best standard cell implementation using the desired library of
logic gates or cells. The efficiency of mapping depends on the cell library and capability to
recognize certain portions of logic as a library gate [10].

Historically, the synthesis is broken down into two isolated processes: optimization and
technology mapping. By dividing the optimization and technology mapping into separate
processes, an inefficiency is brought up due to the loss of information. Optimization working
with the internal representation may not be able to recognize all of the cells (eg. adders)
of the circuit because the internal representation (such as AIG – and-inverter graph) does
not carry any information about certain nodes belonging to larger logic blocks.

3

1.1 Conventional Approaches
Current state-of-the-art logic synthesis tools represent circuits using an intermediate rep-
resentation. The most commonly used is the and-inverter graph (AIG), a directed acyclic
graph composed of two-input AND nodes connected by direct or negated edges [32]. This
representation is simple and scalable, and leads to simple yet efficient algorithms. However,
it suffers from an inherent bias in representation. Eight of the ten possible two-input logic
gates can be represented by means of a single AIG node. The remaining two, namely XOR
and XNOR gates, require three AIG nodes each. The efficiency of synthesis is then limited
as it mostly fully relies on transformations that disallow an increase in the number of AIG
nodes. Also, the synthesis algorithms typically do not treat XORs explicitly – they rely on
identification of XORs during the technology mapping phase which works independently
on the logic optimization phase. The ability to capture XOR gates is, however, essential
for efficient representation of arithmetic and XOR-intensive circuits [20, 19].

To address the inherent bias in AIG representation, various approaches have been pro-
posed. E.g. binary decision diagrams (BDDs, two-input multiplexer networks also denoted
as binary decision diagrams) can be employed [62, 59, 53]. BDDs are useful for a quick
check if a function can replace another one by inspecting the tautology of their equivalence.
Also, BDDs are frequently used for logic function decomposition which is obtained by using
a maximum fanout free cone (MFFC) based on partial collapse technique. Efficient BDD-
based variable partitioning heuristics are used to decompose all collapsed nodes into k-LUT
feasible sub-functions in order to achieve minimized LUT area. Despite having excellent
results for XOR-intensive networks, this representation and the methods built upon it do
not excel when working with other circuits, such as AND/OR-intensive networks [1].

In order to explicitly support XOR gates in logic synthesis, XOR-AIG representation was
introduced by Fiser et al. [17, 9]. The synthesis can be then based on a modified rewriting
algorithm where subgraphs with four leaves are selected. Due to the limited scalability
of XOR-AIG, a two step synthesis process based on a selective and distinct manipulation
of AND/OR and XOR-intensive portions of the logic circuit has been employed [1]. In
the first phase, XOR-intensive regions are identified in the input Boolean network. These
regions are then optimized independently of the rest of the network. In the second phase,
technology independent mapping is done.

Moreover, Majority-inverter Graphs (MIGs consisting of majority gates MAJ and invert-
ers) [2] have been introduced as many modern technologies can be modelled by three-input
majority gates together with inverters. Arithmetically complex circuit described by MIG
can be optimized more effectively than AIGs thanks to the majority operation. Instead of
AIG, XOR majority graphs (XMGs) have been employed to extend the capabilities of the
synthesis oriented on area optimization [27]. Each gate in such a network represents MAJ
or XOR gate and each connection can be inverted. This representation enables smaller
networks, which implies faster synthesis.

To summarize, the conventional methods rely on circuit preprocessing or circuit decom-
position [1], precomputation of optimal solutions [17, 9] or presence of advanced technology
cells such as XMG.

1.2 Unconventional Approaches
Besides the conventional techniques, there are also unconventional ones presented in the sci-
entific literature that apply machine learning approaches to synthesise circuits. These tech-

4

niques, that are typically based on a mathematical model, predominantly rely on the soft-
computing methods such as the evolutionary algorithms (EA) [36]. Unconventional tech-
niques have been successfully applied for circuit optimization since early nineties [34, 35].
Advancements in technology developed in the early nineties enabled researchers to suc-
cessfully apply techniques of evolutionary computation in various problem domains. In the
middle nineties, Higuchi and Thompson, two of the most prominent pioneers, demonstrated
that evolutionary algorithms are able to solve non-trivial hardware-related problems [28, 55].
Genetic algorithm has been employed also by Coello, who evolved various 2-bit adders and
multipliers [11]. Finally, Miller et al. demonstrated that evolutionary design systems are
not only able to rediscover standard designs as it has been shown in the past, but they can,
in some cases, improve them [40, 37]. The achievements presented in the seminal paper
of Higuchi et al. [28] motivated other scientists to intensively explore a new and promising
research topic. As a consequence of that, new research direction referred to as Evolvable
hardware has emerged [25] focusing on the use of evolutionary algorithms to create special-
ized electronics without manual engineering.

One of the most successful methods in the field of digital circuit synthesis is the Carte-
sian Genetic Programming (CGP) [39, 35, 38]. Various modifications of CGP working
directly at the level of gates were successfully applied to address the internal representation
problem [48, 56]. Vasicek demonstrated that the evolutionary synthesis using CGP con-
ducted directly at the level of gates is able to provide significantly better results compared
to the state-of-the-art synthesis operating on AIGs [56]. A similar approach was successfully
applied even to synthesis of conventionally hard to synthesize circuits [18].

It was observed, however, that the efficiency of the evolutionary approach deteriorates
with an increasing number of gates. Substantially more generations were required to re-
duce circuits consisting of more than ten thousand gates. While [56] focuses strictly on
the improvement of the scalability of the evaluation, Sekanina et al. employed a divide
and conquer strategy to address the problem of scalability of representation [48]. The au-
thors were able to obtain better results than other locally operating methods reported in
the literature, however, the performance of this method was significantly worse than the
evolutionary global optimization proposed in [56].

In the past, machine learning methods (eg. neural networks, evolutionary algorithms,
etc.) were mostly researched and applied in the electronic design automation – for exam-
ple, in design placement [60] and reduction [15]. Nowadays, modern logic synthesis tools
also benefit from developments in machine learning field [26, 44]. Eg. Authors in [29]
introduced approaches based on deep neural networks and reinforcement learning (RL) to
obtain optimal structural transformations.

1.3 Research Objectives
In order to improve the results of EA-based synthesis, this thesis proposes a divide and
conquer strategy that does not rely on circuit decomposition, preprocessing or precompu-
tation of optimal solutions. This strategy combines the evolutionary optimization with the
principle of the so-called Boolean network scoping and it is based on an iterative optimiza-
tion of large portions of the original circuit similarly to the conventional rewriting. Boolean
network scoping represents a common approach incorporated in the conventional synthesis
tools for maintaining the good scalability of the synthesis process. The optimization strat-
egy presented in this thesis works as follows. At first, a logic circuit is optimized by means
of a common synthesis approach. Then, the obtained circuit is mapped to standard gates

5

and optimized again using our method that extracts sub-circuits of a manageable size that
are subsequently optimized by the CGP. The extracted sub-circuit is then replaced by its
optimized variant provided that there is an improvement at the global level and the whole
process is repeated. This approach can be understood as the EA-based resynthesis [21, 5].
Compared to the rewriting, which iteratively selects sub-circuits and replaces them with
smaller precomputed subgraphs (e.g low tens of gates), the evolutionary resynthesis bene-
fits from a substantially higher number of gates (e.g. low hundreds of gates) that are more
likely to be further reduced.

We hypothesize that the circuit resynthesis based on the iterative sub-circuit selection
and the subsequent evolutionary optimization of every sub-circuit can achieve a significantly
better gate reduction of the circuit compared to the optimization applied to the whole
circuit.

The following research objectives were formulated:

• To study present conventional and evolutionary techniques of optimization of digital
circuits.

• To propose various methods which extract sub-circuits suitable for the evolutionary
optimization.

• To experimentally validate proposed methods using relevant set of circuits.

• Based on previously obtained results, modify the sub-circuit extraction method to
account for non-uniform delays at the inputs of the extracted sub-circuits.

Undoubtedly, there is a certain risk of worsening some of the circuit parameters that
will not be targeted during optimization, such as delay or power. Additionally, there is
a chance that the sub-circuit extraction methods will not be able to select a sub-circuit
suitable for the subsequent optimization - e.g. the sub-circuit will contain only a few gates
when selecting a sub-circuit near the primary inputs. Also, the sub-circuit selection is not
trivial and requires domain knowledge.

1.4 Thesis Outline
This thesis is composed of a collection of papers and is organized as follows. The study
of the state-of-the-art is present in Chapter 2. It includes the principles of logic synthesis
and evolutionary algorithms. A special attention is devoted to the logic optimization and
the Cartesian Genetic Programming. Chapter 3 presents the research methodology and
scientific papers contributing to this thesis. Chapter 4 summarizes and concludes the thesis
and proposes possible future research. Finally, five research related and peer-reviewed
papers are attached in the section Related Papers.

6

Chapter 2

State of the Art

This chapter provides the background to the research covered in this thesis. Chapter 2.1
introduces Boolean networks and contains notation used in the rest of this work. The most
common optimization methods are discussed in Chapter 2.2. Different approaches to the
Boolean network scoping are discussed in Chapter 2.3.

2.1 Boolean Networks
There are several possibilities on how to represent the combinational and sequential logic
circuits. Further, we will focus on the combinational circuits only. Boolean Networks,
among others, represent one of the most popular mathematical model used to describe the
logic circuits.

Considering the combinational logic, a Boolean network can be understood as a directed
acyclic graph (DAG) with nodes represented by Boolean functions [43]. Further is an
explanation of the most important terms connected to the Boolean networks, that will be
used in this work. Some of the terms are also illustrated in Figure 2.1. The sources of the
graph are the primary inputs (PIs). These are signals that are driven by the environment,
there is no node driving these signals in the network. The sinks of the network are the
primary outputs (POs). POs are signals that drive the environment and are needed by inner
network nodes as well. The output of a node can be an input to other nodes called fanout
nodes (nodes 12, 13 and 14 in Figure 2.1). Fanout refers to the number of digital inputs
that a single output of a logic gate can drive without violating the electrical specifications
of the gate. Specifically, fanout refers to the maximum number of gate inputs that can be
connected to the output of a gate, such that the voltage levels at the output remain within
acceptable ranges and the gate’s output can still drive the connected inputs. The inputs of
a node are called fanin nodes (nodes 6 and 7 in Figure 2.1). Fanin is the number of inputs
that a node is driven by. An edge connects two nodes that are in fanin/fanout relationship.
Transitive fanout is a set of nodes on every possible path between a certain node and POs
(nodes 12–16 in Figure 2.1). Similarly, transitive fanin is a set of nodes that exist on every
possible path between PIs and a certain node (nodes 2, 3, 4, 6, 7 in Figure 2.1). The size of
the network is the number of the nodes (primary inputs and outputs are not considered).
The delay is further understood as the number of gates on the longest topological path
(LTP) of the network. Don’t cares are understood as input combinations that never come
from the environment and outputs that are not observed by the environment.

7

TFO

m

TFO
FO

TFO
FO

FI
TFI

5 6 7 8

10

12

9 11

FI
TFI

FO

TFO TFO

m

TFI
1 2 3 4

TFI TFI

13 14

15 16

Figure 2.1: Example of the fanin and fanout nodes of a selected node m. Fanout nodes are
marked as FO and fanin nodes as FI. Transitive fanout set is marked as TFO and transitive
fanin set is marked as TFI. The FO nodes are included in the TFO and FI nodes in TFI.

Representing a network as a graph is beneficial, as graphs allow reuse of nodes – a node
can be connected to the output of any of the previous nodes [39]. A circuit can be modeled
by means of a Boolean network with various set of logic functions 𝑓𝑖 ∈ Γ. Thus, a different
set of logic functions in nodes can be considered, eg. Γ = {𝑁𝐴𝑁𝐷} or Γ = {𝑋𝑂𝑅,𝐴𝑁𝐷}.
Considering this notation, AIG is a Boolean network composed of two-input ANDs and
inverted edges.

2.2 Boolean Optimization
Logic optimization methods can be divided into two categories, the algebraic methods and
the Boolean methods. The algebraic methods treat a Boolean function as a polynomial
and are usually faster. However, the Boolean methods are more accurate when it comes
to the true nature of logic functions [54]. Current state-of-the-art logic synthesis tools
often represent a Boolean network using an internal representation, such as AIG, XOR-
AIG, XMGs etc. as mentioned in Chapter 1. Thus, the optimization process needs to use
algorithms adapted to work with such representations.

The optimization of AIGs is mostly based on rewriting, an algorithm which minimizes
the size of AIG by replacing its parts with a precomputed optimal networks [42, 46, 16].
The principle of rewriting can be seen in Figure 2.2, where the networks N1, N2 and N3
represent the precomputed optimal networks and can be used as a replacement for a part
of the network. In order to precompute the optimum network, conventional rewriting has
to enumerate the space of Boolean functions. The bigger the Boolean network, the larger
the number of all possible candidate solutions is and its enumeration becomes impossible

8

A B A C

A

B C

B

C A

A A AB

B

C C

N1 N2 N3

Figure 2.2: Principle of rewriting. The three Boolean networks on the top (labeled as N1,
N2, N3) represent three possible variants of a simple circuit represented using AIG. The
bottom-left image shows identification of a subcircuit (gray nodes) which is replaced by its
smaller precomputed variant (N3) in the bottom-right picture. [43]

to cope with [27]. In order to be able to work with large networks, rewriting became a
greedy algorithm which minimizes the size of AIG by iteratively selecting subgraphs rooted
at a node and replacing them with smaller precomputed subgraphs, while preserving the
functionality of the root node [42, 46]. AIG rewriting is local, however, the scope of changes
becomes global by application of rewriting many times. This process has its drawbacks,
such as limited scalability (working only with small networks) and unsatisfactory strategies
used for subnetwork replacement [27].

In addition to that, resubstitution and refactoring can be employed. Boolean resubsti-
tution is considered to be one of the most powerful methods in logic synthesis [54]. Its
principle can be seen in Figure 2.3 where the original network was reduced by one gate
while preserving the logic function of the circuit. Resubstitution expresses the function
of a node using other nodes present in the AIG [43] in order to achieve a more compact
implementation. This can be done thanks to the so-called don’t-cares [6] and permissible
functions [54, 47] (original function of a node n is changed to a different function with-
out changing the behavior in PIs thanks to don’t-cares). Resubstitution is an expensive
method when it comes to runtime, which implies the necessity of partitioning the network
into smaller subgraphs which can be easily manipulated with.

Refactoring iteratively selects large cones of logic rooted at a node and tries to replace
them with a more efficient implementation [42]. Refactoring can be seen as a variant of
rewriting. The main difference is that rewriting selects subgraphs containing few leaves

9

G

A DCB

E

N M

A B C D

F

N M P

E

Figure 2.3: Principle of resubstitution. Node P can be removed and its functionality is
replaced by other nodes while preserving the function of the circuit. [43]

because the number of leaves determines the number of variables of a Boolean function
whose optimal implementation is sought.

2.3 Scaling of Boolean Synthesis
Scalability is one of the essential issues of the synthesis process, mainly when working with
large Boolean networks. The more complex the circuit’s structure is and the more inefficient
work with the internal representation is, the less scalable the synthesis is likely to be. The
goal is to ensure a suitable and simple internal representation and adjust the synthesis
algorithms to be able to execute the transformations effectively over a circuit described by
such an internal representation [43, 7].

Network scoping represents a key operation to ensure a good scalability of synthesis
tools. In addition, it forms an integral part of rewriting as well as refactoring. Two ap-
proaches have been proposed to limit the scope of logic synthesis to work only on a small
portion of a Boolean network – cut computation and windowing [43].

Cut computation is an approach based on computing the so-called 𝑘-feasible cuts [33].
It is usually preferred to avoid determining the required number of logic levels that are
needed to be traversed to get a sub-circuit of the desired size. A cut of a node, called root
node, is a set of nodes of the network, called leaves, such that each path from PI to the
root node passes through at least one leaf. A cut is 𝑘-feasible if the number of leaf nodes
(i.e. cut size) in the cut does not exceed 𝑘. The volume of a cut is the total number of
nodes encountered on all paths between the root node and the cut leaves. An example
of two different 3-feasible cuts is shown in Figure 2.4. To maximize the cut volume, a
reconvergence-driven heuristic is applied in practice. The problem is that the cut computed
using a naive bread-first-search algorithm may include only a few nodes and results in tree-
like logic structures. Such a structure does not lead to any don’t-cares in the local scope of
the node and attempting optimization using such a cut would be wasted time. A simple and
efficient cut computation algorithm producing a cut close to a given size while heuristically
maximizing the cut volume and the number of reconvergent paths subsumed in the cut has
been introduced in [43].

10

m

C1 C2

C3
1 2 3 4

5 6 7

8 10

12

9

11
m

C1 C2 C3

12

1 2 3 4

5 6 7

8 9 10

11

Figure 2.4: Example of two possible 3-feasible cuts for root node 𝑚 and given Boolean
network. The cut on the right is preferred as its volume is four (root node 𝑚 and contained
nodes 5, 7, and 9). There is only one contained node (node 8) in the case of the left cut.

The 𝑘-feasible cuts are important not only for the gate-level logic synthesis but also for
FPGA-based synthesis as a 𝑘-feasible cut can be implemented as a 𝑘-input LUT. For resub-
stitution and FPGA-based mapping, so-called maximum fanout free cone (a subnetwork
where no node in the cone is connected to a node not in the cone) is requested. It means
that the cut-based scoping must always produce a single-output sub-circuits. Otherwise it
would be impossible to replace the whole sub-circuit by a precomputed optimal implemen-
tation / a single LUT. Typically, 4-feasible and 5-feasible cuts are used for rewriting-based
logic synthesis [43, 33]. Small 𝑘 is used not only to make the cut enumeration possible but
also to manage memory requirements to store the precomputed optimal implementations
of all 𝑘-input Boolean functions. For FPGA-based mapping, 5-input and 6-input LUTs are
used. Apart from the rewriting, the reconvergence-driven cuts have been applied to refac-
toring and resubstitution [43]. Typically, 𝑘 is between 5 and 12 for refactoring depending
on the computation effort allowed [43].

The windowing algorithm determining the window for a given node takes a node and
two integers defining the number of logic levels on the fanin/fanout sides of the node to be
included in the window. Two sets are produced as the result of windowing – leaf set and
root set. The window of a Boolean network is the subset of nodes of the network containing
nodes from the root set together with all nodes on paths between the leaf set and the root
set. The nodes in the leaf set are not included in the window. This method has been used,
for example, for computing don’t-cares and redundancy removal [43]. The main problem
of this algorithm is that it is hard to predict how many logic levels have to be traversed to
get a window of the desired size and required number of leaves.

The size of the sub-circuits has an impact not only on the scalability of the synthesis
tool but also on the efficiency of the whole optimization process. Small sub-circuits ensure
a good scalability of the evolutionary optimization, but they lead to minor improvements
at the global level because we obtained a method which operates mainly locally similarly
to the conventional rewriting. Huge sub-circuits, on the other hand, increase possibilities

11

for an improvement but the performance of the evolutionary optimization deteriorates with
increasing the size of the optimized circuit. In order to have a reasonable optimization
method, it is necessary to find a good trade-off between the mentioned two extremes.

2.4 Evolutionary Synthesis of Logic Circuits
Evolutionary algorithms (EAs) are a class of stochastic algorithms inspired by the principles
of biological evolution. In order to solve a particular optimization problem, EAs use genetic
operators to modify the set of candidate solutions consisting of a population of individuals.
These operations are mutation, recombination and reproduction [22]. By mutation, some
parts of an individual are randomly modified. Recombination exchanges some parts between
two or more individuals. When using reproduction, an individual is copied to the offspring
set of candidate solutions without any modification. The fitness function is evaluated for
the set of candidate solutions to express the quality of each individual [30].

Evolutionary computation techniques have been successfully applied in various prob-
lem domains since the early nineties [28, 55]. The first results in the area of digital cir-
cuit synthesis were reported by Koza in 1992, who investigated the evolutionary design of
even-parity circuits in his extensive discussions of the standard genetic programming (GP)
paradigm [31]. EAs have been used to synthesize logic circuits since the late nineties [34, 35].
Miller et al., the author of Cartesian Genetic Programming [39], is considered as a pioneer
in the field of logic synthesis of gate-level circuits. He utilized his own variant of genetic
programming to synthesize compact implementations of multipliers described by means of
a behavioral specification [58]. CGP is described in detail in the next section because it is
relevant for this thesis.

2.5 Cartesian Genetic Programming
Based on the results achieved over the last ten years, it appears that CGP seems to be
the most powerful evolutionary technique in the domain of EA-based logic synthesis and
optimization [35]. The word Cartesian in CGP means that the graph nodes are arranged
in the Cartesian coordinate system – in a 2D array where each node is located at its x and
y coordinates. In the past, 2D array was commonly used, whereas today a linear form of
CGP is preferred. In this case, CGP models a candidate circuit having 𝑛𝑖 PIs and 𝑛𝑜 POs
as a linear 1D array of 𝑛𝑛 configurable nodes that are addressed in a Cartesian coordinate
system. This way, the circuit is represented as the DAG. Each node has 𝑛𝑎 inputs and
corresponds with a single gate with up to 𝑛𝑎 inputs. Two-input and single-output nodes
are typically used. The inputs can be connected either to the output of a node placed
in the previous L columns or directly to PIs. This avoids a feedback. The function of a
node can be chosen from a set Γ consisting of |Γ| = 𝑛𝑓 functions. A genotype is a list
of node connections and functions and can be seen as a one-dimensional string of integers.
Depending on the function of a node, some of its inputs may become redundant. In addition
to that, some of the nodes may become redundant because they are not referenced by any
node connected to a PO. It means that the fixed number of nodes 𝑛𝑛 does not mean that
all the nodes are used effectively. The redundant nodes and inputs lead to the presence of
non-coding genes in the genotype. This feature makes the search effective [41].

The candidate circuits are encoded as follows. Each PI as well as each node has asso-
ciated an unique index. Each node is encoded using 𝑛𝑎 + 1 integers (𝑥1, · · · , 𝑥𝑛𝑎 , 𝑓) where

12

AND

XOR

AND

NOT

OR

A

C

B

S0

S1

XOR

(1, 3, 3) (1, 3, 1) (2, 4, 3) (4, 2, 1) (6, 7, 0) (5, 7, 2) (6, 9)

1

2

3

4

5

6

7

8

9

Figure 2.5: Example of a CGP encoding of a logic circuit (one-bit full adder) with 𝑛𝑖 = 3
inputs and 𝑛𝑜 = 2 outputs. The individual is encoded using an array of 𝑛𝑛 = 6 two-
input single-output nodes whose functions are chosen from a set of primitive functions
Γ = {NOT,AND,OR,XOR}. Note that the nodes are arranged in a two-dimensional
grid for improved readability. Redundant connections and nodes, i.e. those that do not
contribute to the outputs, are highlighted using a dotted line.

the first 𝑛𝑎 integers denote the indices of its fanins and the last integer determines the
function of that node. Every candidate circuit is encoded using 𝑛𝑛(𝑛𝑎 + 1) + 𝑛𝑜 integers
where the last 𝑛𝑜 integers specify the indices corresponding with each PO. An example of
a CGP encoding a one-bit full adder circuit can bee seen in Figure 2.5.

The most common search technique used in connection with the CGP is Evolutionary
strategy (ES) [35, 8]. Typically (1 + 𝜆)-ES is employed, where 𝜆 corresponds with the
number of new candidate solutions generated from a single parental solution. In the circuit
optimization, the initial population is seeded by the original circuit ought to be optimized.
Every new population consists of the best circuit chosen from the previous population and
its 𝜆 offspring created using a mutation operator. Either point or probabilistic mutation
is used in the standard CGP. Point mutation is typically preferred because it is easier to
implement and more efficient than using a probabilistic mutation [41].

The point mutation randomly modifies up to ℎ genes (integers) of a parent genotype
to create an offspring. Considering the CGP encoding, a single mutated gene causes either
reconnection of a node, reconnection of a primary output or change in function of a node.
Due to the presence of redundant genes, the mutation may occur in the redundant part,
which means that the mutated genotype has the same phenotype as its parent. Such a
mutation is sometimes denoted as neutral since the fitness value remains unchanged. To
avoid wasted fitness evaluations, several mutation strategies have been proposed [24, 41].
Single Active Mutation strategy, for example, mutates the offspring until one active gene is
changed. Another possibility is to detect the neutral mutations and skip the time-consuming
fitness evaluation procedure. Considering the usage of CGP in the optimization of logic
circuits, the latter approach has been typically used [52, 57, 56]. Crossover is not used in
the standard CGP because it was found that crossover has little effect on the efficiency of
CGP [41].

The main disadvantage of the CGP encoding in connection with the point mutation
operator is the presence of a strong length and positional bias that results in large portions
of the genotype that are always redundant and never used by any ancestor. To address

13

this issue, several approaches have been proposed [41]. Goldman and Punch, for example,
proposed to apply Reorder operation once each generation shuffles the position of nodes in
the parent [23]. Reorder does not semantically change the parent but it allows active nodes
to be evenly distributed within the whole genotype. This approach eliminates the length
as well as positional bias and improves the efficiency of the search.

The selection of the individuals is typically based on a cost function (e.g. the number
of active nodes). In the case that there are more individuals with the same score, the
individual that has not served as a parent will be selected as the new parent. This procedure
is typically repeated for a predefined number of iterations.

There are several modifications to the original CGP, such as embedded CGP, modu-
lar CGP, multi-chromozome CGP (MC-CGP) or self-modifying CGP [39, 51, 50, 63, 49].
Embedded CGP extends the CGP by including so-called Automatically Defined Functions
(ADFs) to address the problem of scalability of representation. ADFs are modules that can
be dynamically created, destructed, evolved (by the mutation operator) and reused. Mod-
ules are created from a section of the CGP’s genotype. Modular CGP is a modification of
Embedded CGP, where the modules can be nested. MC-CGP uses multiple chromosomes
within a single genotype. This way, a complex multiple-output problem can be divided into
a set of single-output sub-problems that are co-evolved. The sub-chromosomes have equal
length. Each sub-chromosome is connected to a single program output. In self-modifying
CGP (SMCGP), the phenotype of an individual can change over time. Connections of a
node in SMCGP are not strictly defined and the node is not connected to particular nodes.
Instead, a node has a relative address of its connections, meaning, that its inputs are con-
nected to nodes in a certain distance (eg. two nodes back). Modification is ensured by the
presence of nodes that modify their own graph.

14

Chapter 3

Research Summary

3.1 Methodology
The goal of this thesis is to improve the possibilities of EAs in the digital circuit synthesis.
Attention is focused on developing suitable methods for extraction of small portions of logic
circuits that can be optimized by means of CGP and placed back to their original location
providing there is an improvement to the desired criterion in the whole circuit. First steps
of the research are concentrated on development of the network scoping methods. Then
these methods are combined with the optimization engine based on CGP and evaluated on
a set of benchmark circuits. The last step presents a modification of the scoping methods
that allow the optimization process to consider other criteria such as the circuit delay.
Figure 3.1 shows the flow of the EA-based resynthesis compared to the flow of EA-based
optimization where the CGP optimizes whole circuits without sub-circuit extraction.

optimized
circuit

original
circuit

optimized
circuit

CGP
working globally

sub-circuit
extraction

(Section 3.1.2)

CGP
(Section 3.1.1)

delay-aware
CGP

(Section 3.1.3,
paper V)

EA-based optimization

EA-based resynthesis
(this thesis)

* Method A (cut computation, paper I, II)
* Method B (windowing, paper III)
* Method C (reconvergent paths, paper IV)

Figure 3.1: Schematic visualization of the EA-based optimization flow.

3.1.1 Evolutionary optimization

Algorithm 1 describes the overall principle of the evolutionary optimization method pre-
sented in this thesis. It is an iterative process that consists of a sequence of three steps that
are executed in a loop. The goal is to obtain a more efficient alternative to the original

15

Boolean network. To determine the improvement a cost function is used. The cost function
can reflect various objectives (and their combinations as well), such as circuit’s size, delay,
power consumption, etc. At first, such a sub-circuit 𝑊 is selected by one of the extraction
methods that are mentioned in Section 3.1.2. In order to avoid wasting computational time,
the sub-circuit’s suitability for subsequent optimization is inspected. The inspection can
consider various parameters, for example volume of a cut – if a cut contains only a few gates,
the subsequent evolutionary optimization will likely not have a significant impact on it. If
the sub-circuit is not suitable, it is discarded and a different sub-circuit is selected. Then,
the sub-circuit is optimized by means of the CGP with respect to the desired criterion This
part of the algorithm represents the evolutionary step of the optimization. Each node in
the sub-circuit 𝑊 is assigned an unique index and a chromosome corresponding with the
nodes in the sub-circuit is created. The chromosome then represents the sub-circuit 𝑊 in
the CGP optimization. After the evolutionary phase, an optimized sub-circuit 𝑊 ′ is built
from the chromosome. 𝑊 ′ has to satisfy the optimization conditions on the sub-circuit’s
cost (e.g. contains less or equal gates than the original sub-circuit) while being function-
ally equal to its non-optimized version 𝑊 . If these two conditions are met, the original
sub-circuit 𝑊 is replaced by its optimized variant 𝑊 ′ in the circuit 𝑁 . This way, the opti-
mized circuit 𝑁 ′ is obtained. Then, the optimization continues by selecting and optimizing
another sub-circuit or finishes if the termination condition is satisfied (e.g. desired number
of optimization iterations was computed). The number of iterations should be determined
heuristically, as well as the CGP parameters.

Algorithm 1: Optimization of digital circuits using EA-based resynthesis
1 A Boolean network 𝑁 Optimized network 𝑁 ′, 𝑐𝑜𝑠𝑡(𝑁 ′) ≤ 𝑐𝑜𝑠𝑡(𝑁)
2 𝑁 ′ ← 𝑁
3 while termination condition not satisfied do
4 𝑊 ← GetSubcircuit(𝑁 ′) ;
5 if 𝑊 is not a suitable candidate then
6 continue
7 𝑊 ′ ← OptimizeNetworkUsingEA(𝑊 ,𝑁 ′)
8 if cost((𝑁 ′ ∖𝑊) ∪𝑊 ′) < cost(𝑁 ′) then
9 𝑁 ′ ← (𝑁 ′ ∖𝑊) ∪𝑊 ′

10 return 𝑁 ′

3.1.2 Limiting the Scope of Boolean Networks

The method introduced in this thesis is inspired by the network scoping approach that
helps conventional logic synthesis algorithms to work only on a small portion of the original
circuit. This is motivated by the fact that CGP is more efficient when dealing with medium-
sized networks due to the exponential expansion of the large search space. Chapter 2.3
introduced two of the most common techniques that are used for network scoping: cut
computation and windowing. However, as our preliminary experiments showed, using their
original form for the purpose of this thesis would be inefficient because these techniques were
developed for a different purpose. For example, the cut computation, based on 𝑘-feasible
cuts, is commonly used for extracting a subcircuit having only 𝑘 inputs.

16

POs

PIs

m

q1

q7

q4 q5

q8q6 q9

q3

q2

Figure 3.2: Example of a cut consisting of 9 nodes created using the Method A. The root
node is marked as m and is the first node that the cut consists of. The labels 𝑞𝑖 inside the
nodes denote the order 𝑖 in which the nodes were chosen. Leave nodes 𝑞1 and 𝑞2 of the root
node m are added to the cut. Then, leave nodes of 𝑞1 and 𝑞2 are one after another added
to the cut until the cut reaches its desired volume.

However, we would not want to be limited by the number of PIs or POs of the sub-
circuit. The method should be able to extract a sub-circuit of desired volume no matter
how many PIs or POs it has. This can be overcome by using the windowing algorithm. The
windowing algorithm needs the number of logic levels on the fanin/fanout sides of the node
to be included in the window. Our preliminary experiments showed that these features
would be quite limiting for the evolutionary optimization method developed in this thesis.
Instead of limiting the number of inputs of the subcircuits or predicting the number of logic
levels, our attention is focused on the volume (number of gates present in the selection)
and on the presence of don’t-cares in the subcircuit.

Three approaches are proposed in this thesis to limit the scope of logic synthesis to
work only on a small portion of a Boolean network: cut-based computation, windowing and
reconvergent paths selection.

The cut computation approach (Method A) works as follows. The algorithm starts
with a set of leaves consisting of a single root node and an empty cut set. If the leaves set
is empty, the procedure terminates. Otherwise, a node that minimizes a cost function is
chosen from the set of leaves and added to the cut set. The chosen node is removed from
the leaf set and all its fanins are included instead of it. This causes expansion of the cut.
If the cut-volume limit of the cut set is exceeded, the procedure quits and returns the cut.
The complete algorithm can be found in attached Paper I and Paper II and an example of
a cut consisting of nine nodes can be seen in Figure 3.2. At first, the root node m is present
in the leaves set. After it is added to the cut, nodes 𝑞1 and 𝑞2 replace m in the leaves set.
One by one, nodes 𝑞1 and 𝑞2 are removed from the leaves set, added to the cut and their
leaves, 𝑞3, 𝑞4, 𝑞5 and 𝑞6 are put in the leaves set. The procedure continues when the cut
volume reaches nine nodes.

17

m

q2

q3

q4 q5

q1

q6

q7

q8

q9

q10

PIs

POs

Figure 3.3: Example of the window consisting of 10 nodes (𝑤𝑚𝑎𝑥 = 10) created using
the proposed alternative windowing algorithm. The neighboring nodes added into 𝑊 are
highlighted using the filled nodes. The nodes at the bottom are primary inputs. The nodes
in the window have assigned an index (the number located below a particular node) used
to uniquely identify each node in the CGP. The labels 𝑞𝑖 inside the nodes denote the order
𝑖 in which the nodes were chosen.

The windowing algorithm (Method B) starts with the root node and a number deter-
mining the desired volume of the window. In the beginning, the window contains only the
root node denoted as m. In the first iteration, all the nodes, denoted as 𝑞𝑖, that are in
the fanin and fanout of the root node are added to the window. Then, every node that
is directly connected to any of the nodes already present in the window is also added to
the window, until the window reaches the desired volume. The complete algorithm can be
found in attached Paper III and an example of a final state of a window consisting of 10
nodes is shown in Figure 3.3.

In Method A, the cut expands only towards the PIs of the network. If the position of
the root node m is close to the PIs, the cut expansion can terminate before the desired
volume of the cut is reached. Compared to Method B, the window expands in the direction
both of PIs and POs of the network. Thus, the position of the root node m doesn’t have
such a crucial influence of the window volume. It means that there is a high chance that
the window contains at least one node with fanin or fanout nodes that the window can be
expanded with.

The reconvergent paths selection (Method C) is derived from windowing. Reconvergent
paths lead from one source node through two different areas of the network and meet again
in a receiving node that is in the fanout cone of the source node. At first, the reconvergent
path is found in the network and its nodes are included into the window. The window is
then filled in with nodes in the fanin/fanout relationship with the nodes on the reconvergent
path, until the window reaches the desired size. The complete algorithm can be found in
attached Paper IV. An example of a window containing a reconvergent path can be seen
in Figure 3.4, where the reconvergent path consists of five gates and is accompanied by six
surrounding nodes in the window selection.

18

rm

q2

q3

q4

q5

q1

q6

q7 q8

q9 q10

PIs

POs

Figure 3.4: Example of the window consisting of 10 nodes (𝑟𝑤𝑚𝑎𝑥 = 10) created using the
proposed algorithm based on selecting reconvergent paths. The root node is marked as m.
Nodes on the reconvergent path are highlighted using the dark gray filled nodes. These
nodes are the first nodes added to the 𝑅𝑊 The neighboring nodes added into 𝑅𝑊 are
highlighted using the light gray filled nodes. The nodes at the bottom are primary inputs.
The nodes in the window have assigned an index (the number located below a particular
node) used to uniquely identify each node in the CGP. The labels 𝑞𝑖 inside the nodes denote
the order 𝑖 in which the nodes were chosen.

All of the proposed extraction approaches can be easily used for the extraction of the
subcircuits suitable for CGP-based optimization. However, the sub-circuit extraction itself
is connected to some issues that have to be considered. It is not obvious how to identify a
suitable sub-circuit that can be successfully optimized and improves the cost of the whole
circuit after it is implanted back. Another unknown parameter is the proper size of a sub-
circuit. Optimization of large sub-circuits may produce good results. On the other hand, the
computation would need a lot of time for execution. Working with small sub-circuits would
be fast, however, such sub-circuits are hard to improve by the evolution as they contain
only a few nodes. Thus, optimization of small sub-circuits may waste computational time
while not improving the circuit at all. Another issue is the influence of the optimization
process on the non-targeted circuit parameters, e.g. delay. While the optimized circuit may
have a good cost function of the targeted parameter, the cost functions of the other ones
may get significantly worse.

3.1.3 Targeting the Non-uniform Delay on the Sub-circuit’s Inputs

As the experiments with the extraction methods described in Paper I and Paper III and
Paper IV showed, the concept of locally applied optimization is effective and achieves
promising results considering the complexity of the circuits. It means that the number
of gates was reduced even for circuits consisting of tens of thousands of gates. However, the
number of gates is not the only parameter that is affected by the optimization process. Ex-

19

tensive analysis of the obtained results showed that the delay is also affected – in majority
of cases negatively.

As a result of the analysis, we proposed a new method, extending the EA-based opti-
mization proposed in Section 3.1.2. This method consists of the following steps. At first,
a sub-circuit is determined using windowing or reconvergent paths selection algorithm de-
scribed in Section 3.1.2. Then, the delays of POs of the sub-circuit are determined and
every gate in the sub-circuit is assigned with an information about the highest depth value
of the primary output that the sub-circuit has in its fanout. Secondly, the maximal delay
increase is set up. Thirdly, optimization by means of the CGP targeting the smallest pos-
sible number of gates is performed, reflecting the maximum allowed depth of the circuit.
After the CGP step finishes, the optimized sub-circuit is implemented back to the circuit.
The depth of the optimized circuit must not exceed the allowed increase set before the opti-
mization step. The complete algorithm can be found in attached Paper V and an example
is shown in Figure 3.5.

20

 D = 9
Dpo = 100

 D = 10
Dpo = 95

m

 D = 9
Dpo = 83

 D = 9
Dpo = 95

 D = 8
Dpo = 100

 D = 7
Dpo = 100

 D = 8
Dpo = 95

 D = 8
Dpo = 95

 D = 7
Dpo = 100

 D = 7
Dpo = 95

 D = 7
Dpo = 95

5 6 7 8

10

12

9 11

m

 D = 6
Dpo = 100

 D = 6
Dpo = 100

 D = 6
Dpo = 100

 D = 6
Dpo = 95

1 2 3 4

13 14

15 16

PI1 PI2 PIn

PO1 PO2 POn

D=0

D=100 D=83 D=95

 D = 10
Dpo = 83

Figure 3.5: Example of the window build from the root node m consisting of sixteen nodes.
At the bottom of the picture, there are PIs. At the top of the picture, there are POs.
Each PO is assigned with its depth D. After the window is established, each of its nodes is
assigned with two values: its depth (D) and the worst depth (𝐷𝑝𝑜) of a PO that the node
has in its transitive fanout. The worst 𝐷𝑝𝑜 of the window is then subtracted from the delay
of the whole circuit. The CGP is then assigned with this value representing the value of a
depth that the optimized window is allowed to have. Eg. if the circuit’s depth is 𝐷 = 120
and the worst 𝐷𝑝𝑜 is 𝐷𝑝𝑜 = 100, this window is allowed to grow its delay by 20.

21

3.1.4 Experimental Evaluation

We have implemented the proposed algorithms in C++ and integrated them as a part of
Yosys open synthesis suite [61]. The advantage of this tool, among others, is that it allows
us to directly manipulate the Verilog files and that it integrates ABC [7], a state-of-the-art
academic tool for hardware synthesis and verification.

To ensure fair evaluation, each of the proposed sub-circuit extraction algorithms was
evaluated on the same set of circuit benchmarks. This set contains 28 highly optimized
real-world combinational networks containing IWLS’05 Open Cores benchmarks and a set
of arithmetic circuits [4, 3].1 The circuits were firstly optimized by ABC and mapped
to common 2-input gates including XORs/XNORs gates. Optimization by the proposed
methods was then executed and final number of gates in circuits together with the circuit’s
depth is examined. All of the optimized circuits were then formally verified with respect to
their original form (ABC command ’cec’). Number of CGP generations and optimization
iterations were set up heuristically. The root node was chosen randomly for extraction
of each sub-circuit by each proposed method. To avoid wasting computational time on
optimizing sub-circuits that are too small, the lowest possible number of gates in a sub-
circuit was set to 10 gates, based on our preliminary experiments.

Table 3.1 shows overall results for all proposed extraction methods. In particular, it
reports the average and the best gate reduction when optimizing the set of benchmarks
mentioned above. Also, last two columns of the table present the results of globally working
CGP.

The first experimental evaluation was done using the Method A. The experiments
demonstrated the strength of the locally applied optimization and confirmed the hypothesis
introduced in Section 1.3. It also confirmed the inefficiency of the internal circuit repre-
sentation and of the optimization performed before technology mapping which is a method
commonly used in the conventional tools. The proposed methods were able to reduce the
number of gates in every circuit. This implies a presence of redundant gates in the cir-
cuits that were firstly optimized by the ABC tool as was mentioned earlier in this section.
Each method also outperformed the CGP working with whole circuits in majority of cases,
especially when optimizing the arithmetic circuits.

However, this approach also showed an inefficiency of its computation. When we an-
alyzed its results, the ratio of the amount of CGP generations that caused a change to
the sub-circuit and contributed to the circuit optimization was lower than the number of
generations applied to every sub-circuit during the optimization process. This was caused
by the nature of the extraction method. According to the analysis of the parameters of the
extracted subcircuits, this method produces sub-circuits with a lack of possible don’t-cares
in the sub-circuit. The optimization thus converged prematurely (reached the local sub-
optimal state) before all of the CGP generations were applied. Thus a significant amount
of time was wasted on computing CGP generations that did not change the circuit at all
while being stuck in a stable state without any change.

This was the motivation to improve the extraction method in order to be able to se-
lect sub-circuits more suitable for optimization. Method B is able to select sub-circuits
containing as many interconnections between the selected nodes as possible, while building
the sub-circuit from a root node in every possible direction. Thus, a much more compact
sub-circuit with a higher probability of presence of don’t-care nodes is extracted compared
to the cut-based method. This has a positive effect on the gate reduction, where the

1The benchmarks can be found at https://lsi.epfl.ch/MIG

22

windowing-based method significantly outperformed the cut-based method in 22 out of 28
cases. Convergence of this method was more gradual compared to the cut-based method
thanks to compactness of the sub-circuits.

As can be seen, both extraction Methods A and B have advantages and disadvantages.
In order to further improve the extraction process, mainly its convergence and efficiency,
we tried to extract the best features of both techniques. This resulted in the reconvergent
paths selection based method being developed. Presence of a reconvergent path in a window-
like sub-circuit increases the possibility of presence of redundant nodes in the sub-circuit.
The Method C, was constructed based on our assumption of a higher probability of a
good optimization result. Evaluation of this extraction method confirmed this assumption
as it outperformed the windowing-based method in more than 70% of cases. However,
when optimizing circuits with only a few reconvergent paths, the optimization was not so
successful, as the sub-circuit selection often extracted a sub-circuit from a similar place in
the circuit containing the same reconvergent path.

In Section 3.1.3 the impact of the proposed local evolutionary optimization approach on
the circuit’s delay was discussed. Simultaneously, the modification of Method B and Method
C was proposed. This modification targeted possible growth of the delay due to the negative
impact of the optimization process to the circuit’s delay. These two delay-aware methods
were able to identify and remove a significant number of redundant gates while preserving
the delay at the original or desired value. Naturally, the experiments demonstrated that
limiting the maximal circuit delay during the optimization causes a worse gate reduction.
When using the extraction methods without delay-aware modification, the delay at the
end of the optimization process was usually lower than the worst delay achieved during
optimization. Also, in some cases a slight increase led to a significant gate reduction (more
than 50% of the reduction compared to the original methods). The other cases were not
so successful. That is caused mainly by the depth limitation itself: a potentially good
optimization iteration that would bring a good gate reduction or subcircuit modification
is wasted because the depth of the whole circuit would surpass the allowed limit. This
result is expectable as the number of gates and delay are conflicting criteria. Thus, the
optimization can not be expected to produce both compact and fast circuits. The results
obtained from experimental evaluation of the two proposed delay-aware methods can be
seen in Paper V.

As follows from the experimental evaluation, we were able to successfully combine our
sub-circuit extraction methods together with the CGP. This has made the evolutionary
optimization of complex combinational circuits more efficient compared to the CGP working
with whole circuits at once. We have confirmed the hypothesis that the circuit resynthesis
based on the iterative sub-circuit selection and the subsequent evolutionary optimization of
every sub-circuit can achieve a significantly better gate reduction of the circuit compared to
the optimization applied to the whole circuit. Also, we have proposed and experimentally
evaluated the method targeting the non-uniform delay at the inputs of the circuits, that is
able to reduce the number of gates while keeping the desired delay.

23

Table 3.1: Comparison of the proposed methods based on reconvergent-paths selection
(Method C), windowing (Method B) and cuts (Method A) against ABC and globally work-
ing CGP. For each of the proposed methods and globally working CGP, the average and the
best result is presented in means of percentage of removed gates. Column ‘ABC‘ contains
parameters of the optimized circuits after mapping (’gates’ is the number of gates, D is
logic depth).

A
BC

Im
pr

.
M

et
ho

d
C

Im
pr

.
M

et
ho

d
B

Im
pr

.
M

et
ho

d
A

Im
pr

.
gl

ob
al

[5
6]

Be
nc

hm
ar

k
PI

s
PO

s
ga

te
s

D
av

g
be

st
av

g
be

st
av

g
be

st
av

g
be

st
D

SP
42

23
37

92
43

49
1

45
4.

9%
5.

3%
1.

4%
2.

13
%

3.
6%

3.
6%

0.
0%

0.
0%

ac
97

_
ct

rl
22

55
21

36
11

43
3

10
4.

6%
5.

6%
3.

0%
4.

0%
2.

9%
2.

9%
1.

4%
1.

4%
ae

s_
co

re
78

9
53

2
21

12
8

20
8.

5%
9.

8%
4.

2%
5.

5%
2.

9%
2.

9%
0.

6%
1.

7%
de

s_
ar

ea
36

8
70

51
99

25
6.

4%
7.

4%
4.

5%
5.

2%
6.

0%
6.

1%
2.

1%
2.

3%
de

s_
pe

rf
90

42
16

54
78

97
2

16
7.

3%
9.

5%
2.

8%
4.

2%
1.

8%
1.

8%
0.

0%
0.

1%
et

he
rn

et
10

67
2

10
45

2
60

41
3

23
1.

9%
2.

6%
1.

6%
1.

7%
0.

5%
0.

5%
0.

0%
0.

0%
i2

c
14

7
12

7
11

61
12

24
.7

%
25

.7
%

18
.3

%
18

.5
%

9.
2%

9.
2%

10
.0

%
10

.7
%

m
em

_
ct

rl
11

98
95

9
10

45
9

24
9.

6%
10

.9
%

6.
2%

10
.0

%
7.

0%
7.

0%
24

.8
%

25
.4

%
pc

i_
br

id
ge

32
35

19
31

36
19

02
0

21
6.

7%
7.

1%
3.

4%
4.

7%
3.

5%
3.

5%
0.

5%
0.

6%
pc

i_
sp

oc
i_

ct
rl

85
60

11
36

15
43

.0
%

46
.9

%
31

.5
%

36
.7

%
18

.3
%

18
.5

%
34

.8
%

35
.7

%
sa

sc
13

3
12

3
74

6
8

21
.0

%
24

.9
%

7.
4%

7.
4%

6.
2%

6.
2%

2.
4%

2.
8%

sim
pl

e_
sp

i
14

8
13

2
82

2
11

11
.9

%
14

.0
%

6.
6%

7.
4%

5.
5%

5.
7%

4.
4%

4.
6%

sp
i

27
4

23
7

38
25

26
9.

3%
10

.4
%

5.
0%

8.
4%

5.
6%

5.
6%

13
.5

%
20

.2
%

ss
_

pc
m

10
6

90
43

7
7

12
.4

%
13

.0
%

4.
8%

5.
5%

5.
7%

6.
7%

2.
3%

2.
3%

sy
st

em
ca

es
93

0
67

1
11

35
2

27
12

.1
%

19
.8

%
11

.7
%

12
.7

%
11

.9
%

12
.3

%
0.

0%
0.

0%
sy

st
em

cd
es

31
4

12
6

26
01

25
19

.5
%

21
.4

%
15

.7
%

15
.9

%
4.

8%
5.

0%
9.

1%
9.

9%
tv

80
37

3
36

0
87

38
39

10
.5

%
11

.6
%

13
.5

%
14

.2
%

6.
6%

6.
9%

11
.1

%
11

.3
%

us
b_

fu
nc

t
18

60
16

92
15

40
5

23
10

.4
%

14
.0

%
10

.2
%

11
.3

%
5.

8%
5.

9%
2.

6%
2.

6%
us

b_
ph

y
11

3
73

45
2

9
29

.1
%

30
.3

%
17

.7
%

18
.0

%
13

.9
%

14
.0

%
12

.2
%

12
.2

%
av

er
ag

e
(I

W
LS

’0
5

be
nc

hm
ar

ks
)

15
62

0
20

13
.4

%
15

.3
%

6.
4%

6.
5%

6.
4%

6.
5%

7.
0%

7.
6%

m
ul

t3
2

64
64

82
25

42
21

.6
%

24
.6

%
19

.5
%

20
.9

%
16

.5
%

16
.6

%
0.

0%
0.

0%
sq

rt
32

32
16

14
62

30
7

17
.1

%
26

.2
%

6.
6%

9.
5%

22
.3

%
24

.3
%

3.
0%

3.
0%

di
ffe

q1
35

4
19

3
20

71
9

21
8

8.
7%

11
.4

%
25

.5
%

28
.6

%
11

.5
%

11
.5

%
0.

0%
0.

0%
di

v1
6

32
32

58
47

15
2

20
.6

%
25

.1
%

29
.5

%
42

.7
%

15
.7

%
15

.8
%

0.
0%

0.
0%

ha
m

m
in

g
20

0
7

27
24

80
45

.9
%

52
.9

%
58

.8
%

58
.9

%
28

.6
%

30
.1

%
14

.6
%

14
.6

%
M

A
C

32
96

65
77

93
55

5.
5%

6.
4%

9.
5%

10
.5

%
7.

7%
7.

8%
0.

0%
0.

0%
re

vx
20

25
81

31
17

1
7.

9%
9.

0%
18

.0
%

21
.2

%
14

.5
%

14
.5

%
0.

0%
0.

1%
m

ul
t6

4
12

8
12

8
21

99
2

19
0

12
.6

%
12

.9
%

5.
0%

6.
2%

7.
4%

7.
4%

0.
3%

0.
5%

m
ax

51
2

13
0

37
19

11
7

5.
2%

5.
6%

5.
1%

5.
2%

5.
3%

5.
3%

0.
7%

0.
8%

av
er

ag
e

(a
rit

hm
et

ic
be

nc
hm

ar
ks

)
89

56
14

8
14

.5
17

.4
19

.7
%

22
.6

%
14

.4
%

14
.8

%
2.

1%
2.

1%

24

3.2 Papers
The introduced methodology and results have been published within several scientific pa-
pers. An abstract, a brief description and a conclusion of the contribution is presented for
each paper in this section. Full text of each paper can be found in Section 4.1.

3.2.1 Paper I

Kocnova, J., Vasicek, Z. (2019). Towards a Scalable EA-Based Optimization of Digital
Circuits. In: Sekanina, L., Hu, T., Lourenço, N., Richter, H., García-Sánchez, P. (eds)
Genetic Programming. EuroGP 2019. Lecture Notes in Computer Science, vol 11451.
Springer, Cham. https://doi.org/10.1007/978-3-030-16670-0_6

Author participation: 50%
Conference rank: B1 (Qualis)

Abstract Scalability of fitness evaluation was the main bottleneck preventing adoption
of the evolution in the task of logic circuits synthesis since the early nineties. Recently, var-
ious formal approaches have been introduced to this field to overcome this issue. This made
it possible to optimise complex circuits consisting of hundreds of inputs and thousands of
gates. Unfortunately, we are facing another problem – scalability of representation. The
efficiency of the evolutionary optimization applied at the global level deteriorates with the
increasing complexity. In this paper, we propose to apply the concept of local resynthesis.
Resynthesis is an iterative process based on the extraction of smaller sub-circuits from a
complex circuit that are optimized locally and implanted back to the original circuit. When
applied appropriately, this approach can mitigate the problem of scalability of representa-
tion. Our evaluation on a set of non-trivial real-world benchmark problems shows that the
proposed method provides better results compared to the global evolutionary optimization.
In more than 60% cases, a substantially higher number of redundant gates was removed
while keeping the computational effort at the same level.

Contribution In the past, various evolutionary approaches working directly at the
level of gates were successfully applied in the field of circuit optimization. These works aim
to overcome problems with scalability of common internal representations, such as AIG,
used by state-of-the-art synthesis tools. The main goal of our work is to improve the result
of EA-based synthesis by combining EA-based approach with refactoring while following
the principle of local resynthesis applied in common logic synthesis tools. Performance of
the proposed method is evaluated on a set of highly optimized real-world combinational
circuits and compared to the result provided by ABC (the state-of-the-art academic tool
for hardware synthesis and verification) and CGP working with whole circuits.

This work introduces a new approach to the evolutionary optimization. It iteratively
selects subcircuits which are then optimized by means of CGP and returned back to the circuit
provided that there is a reduction of gates. The subcircuits are selected by a relatively naive
method based on the cut computation with random root node selection and no limitation on
the number of inputs of the cut. Using this divide-and-conquer strategy, this approach was
able to reduce the number of gates in circuits by more than 9% on average. The highest
achieved reduction was 28.6% when optimizing the hamming circuit. Compared to the CGP
optimizing the whole circuits globally, the proposed method achieved better results in more
than 60% of cases.

25

3.2.2 Paper II

J. Kocnova and Z. Vasicek, ”EA-Based Refactoring of Mapped Logic Circuits,“ 2019 IEEE
International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 2019, pp. 1-5,
doi: 10.1109/ISCAS.2019.8702084.

Author participation: 50%
Conference rank: A1 (Qualis)

Abstract The increasing complexity of the designs and problematic scalability of origi-
nal representations led to a shift in internal representations used in logic synthesis and
optimization. Heterogeneous representations were replaced with homogeneous intermedi-
ate representations. And-inverter graph (AIG) has been identified as the most promising
structure for scalable logic optimization and many efficient algorithms were implemented
on top of it. However, the inability of AIG to efficiently represent XOR gates together with
the heuristic nature of logic optimization algorithms leads to some inefficiency causing that
the logic can be further minimized even after it has been mapped. This paper presents an
optimization technique based on refactoring targeting mapped combinational circuits. It
iteratively selects large cones of logic, optimizes them and returns them back to the orig-
inal structure provided that there is an improvement in some metric. Performance of the
method is evaluated on a set of complex academic and industrial benchmarks. We show
that a 9.2% reduction in area can be achieved on average compared to the highly optimized
results obtained using the academic state-of- the-art synthesis tool. On average, more than
14% reduction was observed for arithmetic circuits.

Contribution The recent conventional optimization methods need to perform circuit
preprocessing or decomposition in order to handle the complex networks more efficiently.
Moreover, internal representation, such as AIG, used in logic synthesis brings up an ineffi-
ciency – the circuits can be further optimized after they are mapped to the standard gate
representation. What is more, optimizing circuit before mapping can be limiting as it does
not allow an increase to the number of gates of the internal representation. However, this
increase can be beneficial because during the mapping phase, XOR or NXOR gates may be
identified, which implies mapping three AIG gates to one final logic gate. This work brings
out experimental results of the proposed evolutionary optimization method based on iter-
ative selection of subcircuits which are subsequently optimized by CGP. This method was
able to reduce the number of gates of each benchmark circuit at the level of common gates.
Additionally, this work demonstrates the inefficiency of AIG by comparing the number of
AIG nodes of each circuit before and after the evolutionary optimization.

Despite using a very simple strategy of root node selection which may degrade the capa-
bilities of the refactoring, the proposed method is able to outperform the AIG-based as well
as the original EA-based optimization applied to the whole Boolean networks. The proposed
method outrun the AIG-based optimization tool by 6.4% on the controller benchmarks and
by more than 14% on the arithmetic benchmarks.

26

3.2.3 Paper III

Kocnova, J., Vasicek, Z. EA-based resynthesis: an efficient tool for optimization of digital
circuits. Genetic Programming and Evolvable Machines 21, 287–319 (2020).
https://doi.org/10.1007/s10710-020-09376-3

Author participation: 50%
Conference rank: Q2 (Core)

Abstract Scalability of fitness evaluation was the main bottleneck preventing adopting
the evolution in the task of logic circuits synthesis since the early nineties. Recently, var-
ious formal approaches such as SAT and BDD solvers have been introduced to this field
to overcome this issue. This made it possible to optimise complex circuits consisting of
hundreds of inputs and thousands of gates. Unfortunately, we are facing another problem
– scalability of representation. The efficiency of the evolutionary optimization applied at
the global level deteriorates with the increasing complexity. To overcome this issue, we
propose to apply the concept of local resynthesis in this work. Local resynthesis is an itera-
tive process based on the extraction of smaller sub-circuits from a complex circuit that are
optimized locally and implanted back to the original circuit. When applied appropriately,
this approach can mitigate the problem of scalability of representation. Two complemen-
tary approaches to the extraction of the sub-circuits are presented and evaluated in this
work. The evaluation is done on a set of highly optimized complex benchmark problems
representing various real-world controllers, logic and arithmetic circuits. The experimental
results show that the evolutionary resynthesis provides better results compared to globally
operating evolutionary optimization. In more than 85% cases, a substantially higher num-
ber of redundant gates was removed while keeping the computational effort at the same
level. A huge improvement was achieved especially for the arithmetic circuits. On the
average, the proposed method was able to remove 25,1% more gates.

Contribution Local resynthesis is an iterative process based on the extraction of
smaller sub-circuits from a complex circuit that are optimized locally and implanted back
to the original circuit. This work enhances the effectivity of the local evolutionary resynthe-
sis proposed previously. A new extraction method, based on the windowing algorithm, is
presented in this work. Also, the experimental results are compared with the evolutionary
method working with the whole combinational circuits and with the results produced by
the state-of-the-art synthesis tool ABC.

This work proposes a combination of subcircuit selection and evolutionary optimization
as a possible solution to the scalability of fitness evaluation of the EAs. Two different meth-
ods of subcircuit extraction were proposed. The first one is based on computing so-called
cuts. The second one has its origin in the windowing algorithm. During the experimental
phase of both methods, the subcircuits were chosen randomly and then evolutionarily opti-
mized by CGP in each iteration of the optimization. Despite using such a naive approach to
the subcircuit selection, in more than 85% cases, substantially higher number of redundant
gates was removed compared to the CGP operating globally with the whole circuits.

27

3.2.4 Paper IV

J. Kocnová and Z. Vasicek, ”Resynthesis of logic circuits using machine learning and recon-
vergent paths,“ 2021 24th Euromicro Conference on Digital System Design (DSD), Palermo,
Italy, 2021, pp. 69-76, doi: 10.1109/DSD53832.2021.00020.

Author participation: 50%
Conference rank: B1 (Qualis)

Abstract Boolean network scoping represents a common approach incorporated in conven-
tional synthesis tools for maintaining good scalability of the synthesis process. Recently,
an approach to the local resynthesis based on combination of evolutionary optimization
with the principle of Boolean network scoping has been proposed. Local resynthesis is an
iterative process based on the extraction of smaller sub-circuits from a complex circuit that
are optimized locally and implanted back to the original circuit. The main advantage of
the local resynthesis is that it can mitigate the problem of scalability of representation
which is typical to the evolutionary algorithms as the efficiency of the evolutionary op-
timization applied at the global level deteriorates with the increasing circuit complexity.
Unfortunately, the efficiency of local resynthesis depends on the efficiency of the sub-circuit
extraction process. We propose an alternative method, based on the reconvergent paths.
The evaluation is performed on a set of highly optimized benchmark problems representing
various real-world controllers, logic and arithmetic circuits. The method provides better
results compared to the state-of-the-art logic synthesis tool and evolutionary optimization
techniques operating locally and globally. A substantially higher number of redundant gates
was removed in more than 70% cases, while keeping the computational effort at the same
level. A huge improvement was achieved especially for the controllers. On average, the
proposed method was able to remove more than 14.3% of gates. The highest achieved gate
reduction was more than 45% of gates.

Contribution Recently proposed approach to the local resynthesis based on a com-
bination of Boolean network scoping and evolutionary optimization overcame the problem
of scalability of the internal circuit representation as well as the scalability of fitness com-
putation. However, the success of such an approach relies mostly on the efficiency of the
sub-circuit extraction process. This work proposes a new method of sub-circuit selection
based on the reconvergent path identification. It is a modification to the previously pro-
posed windowing-based selection method. Firstly, a reconvergent path is determined and
then a window is built up arround this particular circuit area. This increases the chance of
having don’t-cares in the window and so the probability of a good optimization result also
increases. This method is evaluated on the set of highly optimized benchmark circuits and
compared to the previously proposed optimization methods using modified cut computation
and windowing-based algorithm for circuit extraction.

This work proposes a new method of sub-circuit selection based on reconvergent path
identification. Presence of such a path in the selection increases the chance of a good opti-
mization result based on a high don’t-cares occurence in the selection. As the experimental
results show, the proposed method outperformed the previously introduced methods based on
cut-computation and windowing in 22 out of 28 cases. Compared to the globally working
EA-based optimization, the proposed method won in 26 out of 28 cases. The overall gate
reduction was 14%.

28

3.2.5 Paper V

J. Kocnová and Z. Vasicek, ”Delay-aware evolutionary optimization of digital circuits,“ 2022
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Nicosia, Cyprus, 2022, pp.
188-193, doi: 10.1109/ISVLSI54635.2022.00045.

Author participation: 50%
Conference rank: B1 (Qualis)

Abstract In the recent years, machine learning techniques have successfully been applied
in various fields of digital circuit development including logic synthesis. One of the ap-
proaches is evolutionary resynthesis. It is based on the idea of iterative local optimization
of parts of the original circuit. The main advantage is the possibility to mitigate various
scalability issues connected with the usage of evolutionary algorithms. However, success of
this method depends heavily on the ability to identify suitable candidates for local opti-
mization. Despite that, it has been shown that the local optimization produces significantly
compact solutions compared to the evolutionary optimization performed at the level of the
original circuit. In this paper, we analyze how the local optimization affects the delay of the
circuit and propose a modified approach to the optimization of digital circuits. Compared
to the existing techniques, the proposed method allows the presence of the non-uniform
delay at the inputs of the circuits selected for the local optimization. This modification en-
ables to maintain the delay of the optimized circuit at a reasonable level without significant
overhead. The evaluation done on a set of non-trivial highly optimized benchmark circuits
representing various real-world circuits demonstrated that our method is able to remove a
significant number of gates while preserving the delay at the original value.

Contribution Evolutionary resynthesis, based on the iterative optimization of parts of
the original circuit, is able to overcome several scalability issues connected to the EAs. This
work focuses on how the local optimization affects the delay of the optimized circuit. Pre-
viously proposed method of the subcircuit selection based on windowing and reconvergent
paths are modified in order to cope with the non-uniform delay present on the inputs of the
subcircuits. This modification allows the optimization process to keep the circuit’s delay on
a desired value while still being able to reduce the number of gates by a significant amount.
It means that the designer can specify the maximum allowed increase to the circuit’s delay
and thus keeping the depth changes under control.

This work addresses the possible depth degradation during circuit optimization by lim-
iting the optimization process with the desired depth of the optimized circuit. This change
to the existing windowing and reconvergent path based methods showed that it is possible to
achieve a good optimization result in means of number of gates while allowing quite a small
increase of the circuit’s depth. The maximum number of removed gates was more than 35%
while extending the circuit’s depth by only a 20% of its original value.

3.3 List of Other Papers
• Jitka Kocnova and Zdenek Vasicek. 2019. Impact of subcircuit selection on the effi-

ciency of CGP-based optimization of gate-level circuits. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion (GECCO ’19). Association
for Computing Machinery, New York, NY, USA, 377–378.

Author participation: 50%
Conference rank: N/A

29

• Jitka Kocnova and Zdenek Vasicek. EA-based Optimization of Digital Circuits. In
Proceedings of the 8th Prague Embedded Systems Workshop (PESW 2020). Czech
Technical University in Prague. ISBN 978-80-01-06772-7

Author participation: 50%
Conference rank: N/A

30

Chapter 4

Discussion and Conclusions

This chapter summarizes the research presented in this thesis and discusses open questions
that could be addressed in future work.

This thesis presented the research focused on EA-based resynthesis of complex combi-
national circuits. The work started with a study of the state-of-the-art circuit synthesis
and optimization together with the strengths and weaknesses of the most commonly used
internal circuit representations, such as AIG. Separation of the synthesis and technology
mapping into two different steps causes a significant inefficiency as all of the gates may
not be recognized properly. Moreover, evolutionary algorithms were studied, with focus
on the CGP. It is a powerful EA algorithm, however its performance deteriorates with the
increasing size of networks.

To target the sources of inefficiency identified in our preliminary research, the EA-
based resynthesis module was developed. It combined a cut-based sub-circuit selection
method and CGP representing the evolutionary optimization. The knowledge gained from
this initial research can be found in Chapter 3.1.4 and Paper I and Paper II. In order to
improve the sub-circuit extraction, the windowing-based selection method was implemented
and evaluated w.r.t. the previously mentioned methods (see Paper III). Reconvergent-
paths based selection method was then proposed to increase the possibility of don’t-cares
in the sub-circuit. The experimental results can be seen in the Paper IV. In the last phase,
implementation of the delay-aware extraction method was targeted. This was done by a
modification to the windowing-based and reconvergent-paths based extraction methods, so
that the resynthesis allowed only such modifications to the circuit that did not extend its
delay more than desired. In Paper V, experimental evaluation of this method can be found.

In order to provide a fair and consistent evaluation, all of the proposed methods were
evaluated on the same set of highly-optimized real-world mapped combinational circuits.
Each method was also compared to the state-of-the-art synthesis tool (ABC) and CGP
working with the whole circuits without extracting sub-circuits. Interestingly, as the exper-
imental results demonstrated, each of the proposed methods reached a much better results
than the ABC and globally working CGP. The obtained results confirmed the hypothesis
that the circuit resynthesis based on the iterative sub-circuit selection and subsequent evo-
lutionary evolution of every sub-circuit can achieve a significantly better gate reduction of
the circuit compared to the optimization applied to the whole circuit.

31

4.1 Future Work
Future research topics were identified based on the experiences and experimental evaluation:

• In this thesis, the number of CGP generations was fixed to ensure fair evaluation.
A strategy that adapts the maximum number of generations according to a circuit
parameter, such as the size of the optimized sub-circuit, could be introduced. This
modification could potentially improve the runtime of the resynthesis as it could
prevent optimizing sub-circuits that have a low chance of being further reduced.

• Also, an adaptive strategy that identifies the optimal number of resynthesis iterations
can improve the optimization efficiency. In this work, the number of resynthesis
iterations was set to a fixed number for each of the proposed methods to ensure a
fair evaluation. Usually, the resynthesis reached a stable state much sooner than the
allowed number of iterations were executed. Terminating the computation before
the computation of uneffective iterations would save computational time. On the
other hand, this may stop the optimization slightly before reaching a significant gate
removal that might be done few iterations later (e.g. due to selection of a suitable
sub-circuit that has not yet been extracted).

• The root node of a sub-circuit is chosen randomly in this study because the root
selection problem is NP complete problem itself. Intuitively, the root node selection
is a non-trivial problem and it is necessary to set a suitable criterion that extracts the
suitable root node candidates from all of the circuit’s nodes. It is thus hypothesized
that selecting the root node from a particular area or with a certain interconnections
can improve the resynthesis result.

• In this thesis, each proposed method was executed independently during the exper-
imental phase in order to examine its capabilities. As the results show, the no-free-
lunch theorem is applied – eg. the windowing based method produced significantly
better results than the CGP working on whole circuits; however there are situations
where it is the other way around. Interlacing eg. the globally working CGP with the
windowing-based method could improve the results and lead to a better convergence.
This leads to the necessity of introducing an adaptive strategy that will decide on the
basis of performance of currently applied method.

32

Bibliography

[1] Amaru, L., Gaillardon, P. E. and Micheli, G. D. MIXSyn: An efficient logic
synthesis methodology for mixed XOR-AND/OR dominated circuits. In: 2013 18th
Asia and South Pacific Design Automation Conference (ASP-DAC). 2013,
p. 133–138.

[2] Amaru, L., Gaillardon, P. E. and Micheli, G. D. Majority-Inverter Graph: A
New Paradigm for Logic Optimization. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems. 2016, vol. 35, no. 5, p. 806–819.

[3] Amaru, L., Gaillardon, P. E. and Micheli, G. D. Majority-Inverter Graph: A
New Paradigm for Logic Optimization. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems. 2016, vol. 35, no. 5, p. 806–819.

[4] Amaru, L., Gaillardon, P.-E. and De Micheli, G. The EPFL Combinational
Benchmark Suite. Proc. of the 24th Int. Workshop on Logic and Synthesis. 2015.

[5] Amarú, L., Soeken, M., Vuillod, P., Luo, J., Mishchenko, A. et al.
Improvements to boolean resynthesis. In: 2018 Design, Automation Test in Europe
Conference Exhibition (DATE). 2018, p. 755–760. DOI:
10.23919/DATE.2018.8342108.

[6] Brand. Redundancy and Don’t Cares in Logic Synthesis. IEEE Transactions on
Computers. 1983, C-32, no. 10, p. 947–952. DOI: 10.1109/TC.1983.1676139.

[7] Brayton, R. and Mishchenko, A. ABC: An Academic Industrial-Strength
Verification Tool. In: Computer Aided Verification. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, p. 24–40. ISBN 978-3-642-14295-6.

[8] Bäck, T., Hoffmeister, F. and Schwefel, H.-P. A Survey of Evolution
Strategies. In:. January 1991, p. 2–9.

[9] Çalık, c., Sönmez Turan, M. and Peralta, R. The Multiplicative Complexity of
6-Variable Boolean Functions. Cryptography Commun. Berlin, Heidelberg:
Springer-Verlag. 2019, vol. 11, no. 1, p. 93–107. DOI: 10.1007/s12095-018-0297-2.
ISSN 1936-2447. Available at: https://doi.org/10.1007/s12095-018-0297-2.

[10] Chatterjee, S., Mishchenko, A., Brayton, R. K., Wang, X. and Kam, T.
Reducing Structural Bias in Technology Mapping. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems. 2006, vol. 25, no. 12,
p. 2894–2903. DOI: 10.1109/TCAD.2006.882484.

33

https://doi.org/10.1007/s12095-018-0297-2

[11] Coello, C. C. A., Christiansen, A. D. and Aguirre, A. H. Automated Design of
Combinational Logic Circuits by Genetic Algorithms. In: Artificial Neural Nets and
Genetic Algorithms: Proceedings of the International Conference in Norwich, U.K.,
1997. Vienna: Springer Vienna, 1998, p. 333–336. DOI:
10.1007/978-3-7091-6492-1_73. ISBN 978-3-7091-6492-1.

[12] Conceição, C., Moura, G., Pisoni, F. and Reis, R. A cell clustering technique to
reduce transistor count. In: 2017 24th IEEE International Conference on Electronics,
Circuits and Systems (ICECS). 2017, p. 186–189. DOI:
10.1109/ICECS.2017.8291996.

[13] Conceição, C. M. d. O. and Reis, R. A. d. L. Transistor Count Reduction by Gate
Merging. IEEE Transactions on Circuits and Systems I: Regular Papers. 2019,
vol. 66, no. 6, p. 2175–2187. DOI: 10.1109/TCSI.2019.2907722.

[14] Darringer, J. A., Joyner, W. H., Berman, C. L. and Trevillyan, L. Logic
Synthesis Through Local Transformations. IBM Journal of Research and
Development. 1981, vol. 25, no. 4, p. 272–280. DOI: 10.1147/rd.254.0272.

[15] Ellouz, S., Gamand, P., Kelma, C., Vandewiele, B. and Allard, B. Combining
Internal Probing with Artificial Neural Networks for Optimal RFIC Testing. In: 2006
IEEE International Test Conference. 2006, p. 1–9. DOI: 10.1109/TEST.2006.297705.

[16] Fiser, P., Halecek, I. and Schmidt, J. Are XORs in logic synthesis really
necessary? In: IEEE 20th International Symposium on Design and Diagnostics of
Electronic Circuits and Systems (DDECS). 2017, p. 138–143.

[17] Fiser, P., Halecek, I. and Schmidt, J. SAT-Based Generation of Optimum
Function Implementations with XOR Gates. In: 2017 Euromicro Conference on
Digital System Design (DSD). 2017, p. 163–170.

[18] Fiser, P., Schmidt, J., Vasicek, Z. and Sekanina, L. On logic synthesis of
conventionally hard to synthesize circuits using genetic programming. In: 13th IEEE
Symposium on Design and Diagnostics of Electronic Circuits and Systems. 2010,
p. 346–351.

[19] Fiser, P. and Schmidt, J. Small but Nasty Logic Synthesis Examples. In: Proc. 8th
Int. Workshop on Boolean Problems. 2008, p. 183–190.

[20] Fiser, P. and Schmidt, J. The Observed Role of Structure in Logic Synthesis
Examples. In: 18th Int. Workshop on Logic and Synthesis. 2009, p. 210–213.

[21] Fiser, P. and Schmidt, J. It Is Better to Run Iterative Resynthesis on Parts of the
Circuit. In: Proc. of the 19th Int. Workshop on Logic and Synthesis. Univ. of
California Irvine, 2010, p. 17–24.

[22] Frenzel, J. Genetic algorithms. IEEE Potentials. 1993, vol. 12, no. 3, p. 21–24.
DOI: 10.1109/45.282292.

[23] Goldman, B. W. and Punch, W. F. Analysis of cartesian genetic programming’s
evolutionary mechanisms. IEEE Transactions on Evolutionary Computation. IEEE.
2015, vol. 19, no. 3, p. 359–373.

34

[24] Goldman, B. and Punch, W. Reducing wasted evaluations in cartesian genetic
programming. Lecture Notes in Computer Science. Vienna: [b.n.]. 2013, 7831 LNCS,
p. 61–72. DOI: 10.1007/978-3-642-37207-0_6. ISSN 03029743.

[25] Gordon, T. G. W. and Bentley, P. J. On evolvable hardware. In: Soft Computing
in Industrial Electronics. London, UK: Physica-Verlag, 2002, p. 279–323.

[26] Grosnit, A., Malherbe, C., Tutunov, R., Wan, X., Wang, J. et al. BOiLS:
Bayesian Optimisation for Logic Synthesis. In: 2022 Design, Automation Test in
Europe Conference Exhibition (DATE). 2022, p. 1193–1196. DOI:
10.23919/DATE54114.2022.9774632.

[27] Haaswijk, W., Soeken, M., Amaru, L., Gaillardon, P. E. and Micheli, G. D.
A novel basis for logic rewriting. In: 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC). 2017, p. 151–156.

[28] Higuchi, T., Niwa, T., Tanaka, T., Iba, H., Garis, H. de et al. Evolving
Hardware with Genetic Learning: A First Step Towards Building a Darwin Machine.
In: Proc. of the 2nd International Conference on Simulated Adaptive Behaviour. MIT
Press, 1993, p. 417–424.

[29] Huang, G., Hu, J., He, Y., Liu, J., Ma, M. et al. Machine Learning for Electronic
Design Automation: A Survey. ACM Trans. Des. Autom. Electron. Syst. New York,
NY, USA: Association for Computing Machinery. jun 2021, vol. 26, no. 5. DOI:
10.1145/3451179. ISSN 1084-4309. Available at: https://doi.org/10.1145/3451179.

[30] Kinnear, K. Fitness landscapes and difficulty in genetic programming.
In: Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE
World Congress on Computational Intelligence. 1994, p. 142–147 vol.1. DOI:
10.1109/ICEC.1994.350026.

[31] Koza, J. R. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge, MA: MIT Press, 1992.

[32] Kuehlmann, A., Paruthi, V., Krohm, F. and Ganai, M. Robust Boolean
reasoning for equivalence checking and functional property verification. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2002,
vol. 21, no. 12, p. 1377–1394. DOI: 10.1109/TCAD.2002.804386.

[33] Li, N. and Dubrova, E. AIG rewriting using 5-input cuts. In: Proc. of the 29th Int.
Conf. on Computer Design. IEEE CS, 2011, p. 429–430.

[34] Lohn, J. D. and Hornby, G. S. Evolvable Hardware: Using Evolutionary
Computation to Design and Optimize Hardware Systems. IEEE Computational
Intelligence Magazine. 2006, vol. 1, no. 1, p. 19–27.

[35] Miller, J. and Thomson, P. Cartesian Genetic Programming. In: Proc. of the 3rd
European Conference on Genetic Programming EuroGP2000. Springer, 2000, vol.
1802, p. 121–132. LNCS.

[36] Miller, J. D. . V. V. Principles in the Evolutionary Design of Digital Circuits.
In: Genetic Programming and Evolvable Machines 1. 2000, p. 7–35 vol.1.

35

https://doi.org/10.1145/3451179

[37] Miller, J. F. Digital Filter Design at Gate-level Using Evolutionary Algorithms.
In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
1999. Morgan Kaufmann, 1999, p. 1127–1134.

[38] Miller, J. F. An Empirical Study of the Efficiency of Learning Boolean Functions
Using a Cartesian Genetic Programming Approach. In: Proceedings of the 1st Annual
Conference on Genetic and Evolutionary Computation - Volume 2. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1999, p. 1135–1142. GECCO’99. ISBN
1558606114.

[39] Miller, J. F. Cartesian Genetic Programming. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011. 17–34 p. ISBN 978-3-642-17310-3. Available at:
https://doi.org/10.1007/978-3-642-17310-3_2.

[40] Miller, J. F., Thomson, P. and Fogarty, T. Designing Electronic Circuits Using
Evolutionary Algorithms. Arithmetic Circuits: A Case Study. In: Genetic Algorithms
and Evolution Strategies in Engineering and Computer Science. Wiley, 1997,
p. 105–131.

[41] Miller, J. F. Cartesian genetic programming: its status and future. Genetic
Programming and Evolvable Machines. Aug 2019. DOI: 10.1007/s10710-019-09360-6.
ISSN 1573-7632.

[42] Mishchenko, A., Chatterjee, S. and Brayton, R. DAG-aware AIG rewriting: a
fresh look at combinational logic synthesis. In: 2006 43rd ACM/IEEE Design
Automation Conference. July 2006, p. 532–535. DOI: 10.1145/1146909.1147048.
ISSN 0738-100X.

[43] Mishchenko, A. and Brayton, R. Scalable Logic Synthesis using a Simple Circuit
Structure. In: Int. Workshop on Logic and Synthesis. 2006, p. 15–22.

[44] Rai, S., Neto, W. L., Miyasaka, Y., Zhang, X., Yu, M. et al. Logic Synthesis
Meets Machine Learning: Trading Exactness for Generalization. ArXiv preprint
arXiv:2012.02530. 2020.

[45] Reis, R. Trends on EDA for low power. In: 2015 IEEE MTT-S International
Conference on Numerical Electromagnetic and Multiphysics Modeling and
Optimization (NEMO). 2015, p. 1–4. DOI: 10.1109/NEMO.2015.7415104.

[46] Riener, H., Haaswijk, W., Mishchenko, A., De Micheli, G. and Soeken, M.
On-the-fly and DAG-aware: Rewriting Boolean Networks with Exact Synthesis.
In: 2019 Design, Automation Test in Europe Conference Exhibition (DATE). 2019,
p. 1649–1654. DOI: 10.23919/DATE.2019.8715185.

[47] Sato, H., Yasue, Y., Matsunaga, Y. and Fujita, M. Boolean Resubstitution with
Permissible Functions and Binary Decision Diagrams. In: Proceedings of the 27th
ACM/IEEE Design Automation Conference. New York, NY, USA: Association for
Computing Machinery, 1991, p. 284–289. DAC ’90. DOI: 10.1145/123186.123276.
ISBN 0897913639. Available at: https://doi.org/10.1145/123186.123276.

[48] Sekanina, L., Ptak, O. and Vasicek, Z. Cartesian Genetic Programming as Local
Optimizer of Logic Networks. In: 2014 IEEE Congress on Evolutionary Computation.
IEEE CIS, 2014, p. 2901–2908.

36

https://doi.org/10.1007/978-3-642-17310-3_2
https://doi.org/10.1145/123186.123276

[49] Sekanina, L. Evolvable Components: From Theory to Hardware Implementations.
Natural Computing Series, Springer Verlag, 2004.

[50] Shanthi, A. P. and Parthasarathi, R. Practical and scalable evolution of digital
circuits. Applied Soft Computing. 2009, vol. 9, no. 2, p. 618–624.

[51] Stomeo, E., Kalganova, T. and Lambert, C. Generalized Disjunction
Decomposition for Evolvable Hardware. IEEE Transaction Systems, Man and
Cybernetics, Part B. 2006, vol. 36, no. 5, p. 1024–1043.

[52] Tao, Y., Zhang, L. and Zhang, Y. A projection-based decomposition for the
scalability of evolvable hardware. Soft Computing. Jun 2016, vol. 20, no. 6,
p. 2205–2218. DOI: 10.1007/s00500-015-1636-2. ISSN 1433-7479.

[53] Tavares, R., Meinhardt, C. and Reis, R. OrBDDs Direct Mapping for Structured
Logic Circuits. In: 2006 13th IEEE International Conference on Electronics, Circuits
and Systems. 2006, p. 1057–1060. DOI: 10.1109/ICECS.2006.379620.

[54] Testa, E., Amarú, L., Soeken, M., Mishchenko, A., Vuillod, P. et al.
Extending Boolean Methods for Scalable Logic Synthesis. IEEE Access. 2020, vol. 8,
p. 226828–226844. DOI: 10.1109/ACCESS.2020.3045014.

[55] Thompson, A. Silicon evolution. In: Proceedings of the First Annual Conference on
Genetic Programming. Cambridge, MA, USA: MIT Press, 1996, p. 444–452. GECCO
’96.

[56] Vasicek, Z. Cartesian GP in Optimization of Combinational Circuits with Hundreds
of Inputs and Thousands of Gates. In: Proceedings of the 18th European Conference
on Genetic Programming – EuroGP. Springer International Publishing, 2015,
p. 139–150. LCNS 9025.

[57] Vasicek, Z. and Sekanina, L. Formal Verification of Candidate Solutions for
Post-Synthesis Evolutionary Optimization in Evolvable Hardware. Genetic
Programming and Evolvable Machines. 2011, vol. 12, no. 3, p. 305–327.

[58] Vassilev, V., Job, D. and Miller, J. F. Towards the Automatic Design of More
Efficient Digital Circuits. In: Lohn, J., Stoica, A., Keymeulen, D.
and Colombano, S., ed. Proc. of the 2nd NASA/DoD Workshop on Evolvable
Hardware. Los Alamitos, CA, USA: IEEE Computer Society, 2000, p. 151–160.

[59] Vemuri, N., Kalla, P. and Tessier, R. BDD-based Logic Synthesis for LUT-based
FPGAs. ACM Trans. Des. Autom. Electron. Syst. New York, NY, USA: ACM.
october 2002, vol. 7, no. 4, p. 501–525. ISSN 1084-4309.

[60] Ward, S., Ding, D. and Pan, D. Z. PADE: A high-performance placer with
automatic datapath extraction and evaluation through high-dimensional data
learning. In: DAC Design Automation Conference 2012. 2012, p. 756–761. DOI:
10.1145/2228360.2228497.

[61] Wolf, C., Glaser, J. and Kepler, J. Yosys-a free Verilog synthesis suite.
In: Proceedings of the 21st Austrian Workshop on Microelectronics (Austrochip). 2013.

37

[62] Yang, C. and Ciesielski, M. BDS: a BDD-based logic optimization system.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on.
Jul 2002, vol. 21, no. 7, p. 866–876.

[63] Zhao, S. and Jiao, L. Multi-objective evolutionary design and knowledge discovery
of logic circuits based on an adaptive genetic algorithm. Genetic Programming and
Evolvable Machines. 2006, vol. 7, no. 3, p. 195–210.

38

Related Papers

39

Appendix A

Towards a Scalable EA-based
Optimization of Digital Circuits

KOCNOVA Jitka and VASICEK Zdenek
In: European Conference on Genetic Programming 2019. Berlin: Springer International
Publishing, LNCS 11451, 2019, pp. 81–97. ISBN 978-3-030-16669-4.

40

Towards a Scalable EA-based Optimization of
Digital Circuits

Jitka Kocnova and Zdenek Vasicek[0000−0002−2279−5217]

Brno University of Technology, Faculty of information Technology,
IT4Innovations Centre of Excellence,

Brno, Czech Republic,
Email: ikocnova@fit.vutbr.cz, vasicek@fit.vutbr.cz

Abstract. Scalability of fitness evaluation was the main bottleneck pre-
venting adopting the evolution in the task of logic circuits synthesis since
early nineties. Recently, various formal approaches have been introduced
to this field to overcome this issue. This made it possible to optimise
complex circuits consisting of hundreds of inputs and thousands of gates.
Unfortunately, we are facing to the another problem – scalability of rep-
resentation. The efficiency of the evolutionary optimization applied at
the global level deteriorates with the increasing complexity. In this pa-
per, we propose to apply the concept of local resynthesis. Resynthesis is
an iterative process based on extraction of smaller sub-circuits from a
complex circuit that are optimized locally and implanted back to the orig-
inal circuit. When applied appropriately, this approach can mitigate the
problem of scalability of representation. Our evaluation on a set of non-
trivial real-world benchmark problems shows that the proposed method
provides better results compared to global evolutionary optimization. In
more than 60% cases, substantially higher number of redundant gates
was removed while keeping the computational effort at the same level.

Keywords: Cartesian Genetic Programming · Resynthesis · Logic op-
timization.

1 Introduction

Logic synthesis, as understood by the hardware community, is a process that
transforms a high-level description into a gate-level or transistor-level implemen-
tation. Due to the complexity of the problem, the synthesis process is typically
broken into a sequence of steps. Among others, logic optimization represents an
important part of the whole process. The goal of the logic optimization is to
transform a suboptimal solution into an optimal gate-level implementation with
respect to given synthesis goals. Due to the scalability issues, the problem is
typically represented using a suitable internal representation. Current state-of-
the-art logic synthesis tools, such as ABC, represent circuits using a directed
acyclic graph composed of two-input AND nodes connected by direct or negated
edges denoted as and-inverter graph (AIG). The optimization of AIGs is based

2 Jitka Kocnova and Zdenek Vasicek

on rewriting, a greedy algorithm which minimizes size of AIG by iteratively
selecting subgraphs rooted at a node and replacing them with smaller precom-
puted subgraphs, while preserving the functionality of the root node [1]. AIG
rewriting is local, however, the scope of changes becomes global by application
of rewriting many times. In addition to that, resubstitution and refactoring can
be employed. Resubstitution expresses the function of a node using other nodes
present in the AIG [2]. Refactoring iteratively selects large cones of logic rooted
at a node and tries to replace them with a more efficient implementation [1].
Refactoring can be seen as a variant of rewriting. The main difference is that
rewriting selects subgraphs containing few leaves because the number of leaves
determines the number of variables of a Boolean function whose optimal imple-
mentation is sought.

The AIG representation is simple and scalable, and leads to simple algorithms
but it suffers from an inherent bias in representation. While eight of ten possible
two-input logic gates may be represented by means of a single AIG node, XOR
and XNOR gate require three AIG nodes each. The efficiency of synthesis is then
limited as it mostly fully relies on transformations that disallow an increase the
number of AIG nodes. It has been shown that there exists a huge class of real-
world circuits for which the synthesis fails and provides very poor results [3–5]. In
some cases, the area of the synthesized circuits is of orders of magnitude higher
than the known optimum. If a large design is broken down to multiple smaller
circuits and such a failure occurs during resynthesis, we obtain an unacceptably
large circuit.

Various evolutionary approaches working directly at the level of gates were
successfully applied to address this problem [3, 6]. Vasicek demonstrated that the
evolutionary synthesis using Cartesian Genetic Programming (CGP) conducted
directly at the level of common gates is able to provide significantly better results
compared to the state-of-the-art synthesis operating on AIGs [6]. On average,
the method enabled a 34% reduction in gate count on an extensive set of bench-
mark circuits when executed for 15 minutes. It was observed, however, that the
efficiency of the evolutionary approach deteriorates with an increasing number of
gates. Substantially more generations were required to reduce circuits consisting
of more than ten thousands gates. While [6] focuses strictly on the improvement
of the scalability of the evaluation, Sekanina et al. employed a divide and conquer
strategy to address the problem of scalability of representation [3]. The authors
were able to obtain better results than other locally operating methods reported
in the literature, however, the performance of this method was significantly worse
than the evolutionary global optimization proposed in [6].

In order to improve the results of EA-based synthesis, we propose to com-
bine the EA-based approach with refactoring while following the principle of
local resynthesis applied in common logic synthesis tools. Firstly, a logic circuit
is optimized by means of a common synthesis approach. Then, the optimized cir-
cuit is mapped to standard gates and optimized using the proposed method that
extracts a relatively small sub-circuits that are subsequently optimized by Carte-
sian Genetic Programming (CGP). The original sub-circuit is then replaced by

Towards a Scalable EA-based Optimization of Digital Circuits 3

its optimized variant provided that there is an improvement at the global level
and the whole process is repeated. Our approach is based on iterative optimiza-
tion of large portions of the original circuit. Compared to rewriting, we do not
impose any limitation on the number of leaves because the larger subgraphs offer
more opportunities for potential area improvement.

2 Background

This section presents relevant background on conventional as well as EA-based
optimization of logic circuits and introduces the notation used in the rest of the
paper.

2.1 Boolean networks

Every circuit can be represented using a Boolean network. A Boolean network is
a directed acyclic graph (DAG) with nodes represented by Boolean functions [2].
The sources of the graph are the primary inputs (PIs) of the network and the
sinks are the primary outputs (POs). The output of a node may be an input
to other nodes called fanouts. The inputs of a node are called fanins. An edge
connects two nodes that are in fanin/fanout relationship. Considering this no-
tion, And-Inverter Graph is a Boolean network composed of two-input ANDs
and inverters. The network primary inputs are signals that are driven by the
environment, there is no node driving these signals in the network. Similarly,
the primary outputs are signals that drive the environment and are needed by
inner network nodes as well. The size of the network is the number of the nodes
(primary inputs and outputs are not considered).

2.2 Limiting the scope of Boolean networks

Network scoping represents a key operation to ensure a good scalability of syn-
thesis tools when working with large Boolean networks. In addition, it forms
an integral part of rewriting as well as refactoring. Two approaches have been
proposed to limit the scope of logic synthesis to work only on a small portion of
a Boolean network – windowing and cut computation [2].

The windowing algorithm determining the window for a given node takes a
node and two integers defining the number of logic levels on the fanin/fanout
sides of the node to be included in the window. Two sets are produced as the
result of windowing – leaf set and root set. The window of a Boolean network is
the subset of nodes of the network containing nodes from root set together with
all nodes on paths between the leaf set and the root set. The nodes in the leaf
set are not included in the window. The main problem of this algorithm is that
it is hard to predict how many logic levels have to be traversed to get a window
of the desired size and required number of leaves.

A complementary approach based on computing so called k-feasible cuts is
usually preferred to avoid determining the required number of logic levels. A cut

4 Jitka Kocnova and Zdenek Vasicek

of a node, called root node, is a set of nodes of the network, called leaves, such
that each path from PI to the root node passes through at least one leaf. A cut is
k-feasible if the number of nodes (i.e. cut size) in the cut does not exceed k. The
volume of a cut is the total number of nodes encountered on all paths between
the root node and the cut leaves. An example of two different 3-feasible cuts is
shown in Fig. 1. To maximize the cut volume, a reconvergence-driven heuristic is
applied in practice. The problem is that the cut computed using a naive bread-
first-search algorithm may include only few nodes and leads to tree-like logic
structures (see Fig. 1a showing a cut determined by the naive approach and
Fig. 1b showing the output of reconvergence-driven heuristic). Such a structure
does not lead to any don’t cares in the local scope of the node and attempting
optimization using such a cut would be wasted time. A simple and efficient cut
computation algorithm producing a cut close to a given size while heuristically
maximizing the cut volume and the number of reconvergent paths subsumed in
the cut has been introduced in [2]. As our work is based on the reconvergence-
driven cuts, we briefly discuss this algorithm. The algorithm starts with a set
of leaves consisting of a single root node. This set is incrementally expanded
by adding one node in each step of a recursive procedure. If the set consists of
only PIs, the procedure quits. Otherwise, a non-PI node that minimizes a cost
function is chosen from the set of leaves. The chosen node is removed from the
leaf set and all its fanins are included instead of it. This causes expansion of
the cut. If the cut-size limit is exceeded, the procedure quits and returns the
cut before expansion. The cost function returns the number of new nodes that
should be added to the leaf set instead of the removed node.

(a) Cut CI = {7, 2, 9} (b) Cut CII = {1, 2, 9}

Fig. 1: Example of two possible 3-feasible cuts for root node m and given Boolean
network. The cut CII is preferred as its volume is four (root nodem and contained
nodes 5, 7, and 9). There is only one contained node (node 8) in the case of CI.

The k-feasible cuts are important not only for the gate-level logic synthesis
but also for FPGA-based synthesis as a k-feasible cut can be implemented as a

Towards a Scalable EA-based Optimization of Digital Circuits 5

k-input LUT. For resubstitution and FPGA-based mapping, so called maximum
fanout free cone (a subnetwork where no node in the cone is connected to a node
not in the cone) is requested. It means that the cut-based scoping must always
produce a single-output sub-circuits. Otherwise it would be impossible to replace
the whole sub-circuit by a precomputed optimal implementation / a single LUT.
Typically, 4-feasible and 5-feasible cuts are used for rewriting-based logic synthe-
sis [2, 7]. Small k is used not only to make the cut enumeration possible but also
to manage memory requirements to store the precomputed optimal implemen-
tations of all k-input Boolean functions. For FPGA-based mapping, 5-input and
6-input LUTs are used. Apart from the rewriting, the reconvergence-driven cuts
have been applied to refactoring and resubstitution [2]. Typically, k is between
5 and 12 for refactoring depending on the computation effort allowed [2].

2.3 Evolutionary Synthesis of Logic Circuits

Evolutionary algorithms (EAs) have been used to synthesize logic circuits since
late nineties [8, 9]. Miller et al., the author of Cartesian Genetic Programming
(CGP) [10], is considered as a pioneer in the field of logic synthesis of gate-
level circuits. He utilized his own variant of genetic programming to synthesize
compact implementations of multipliers described by means of a behavioral spec-
ification [11]. Despite of many advantages of this unconventional technique, only
small problem instances were typically addressed. To tackle the limited scala-
bility, various decomposition strategies have been proposed. A good survey of
the existing techniques is provided, for example, in [12]. The projection-based
decomposition approaches such as [13] or [12] helped to increase the complexity
of problem instances that can be solved by EAs. Despite of that, the gap be-
tween the complexity of problems addressed by EAs and in industry continued
to widen as the advancements in technology developed. In 2011, the scalability
of CGP has been significantly improved by introducing a SAT-based CGP. The
SAT-based CGP replaces determining of Hamming distance done by exhaustive
simulation with a modern SAT solver [14]. It exploits the fact that the candidate
solutions must be functionally equivalent with their parent in logic optimization
in order to be further accepted. In addition to that, it exploits the knowledge of
differences between parental and candidate circuits. The efficiency of SAT-based
method was further improved by combining a SAT solver with an adaptive high-
performance circuit simulator used to quickly identify the potential functional
non-equivalence. The most advanced SAT-based CGP employs a simulator that
is driven by counterexamples produced by the SAT solver [6]. Neither the origi-
nal nor the latter approach rely on a decomposition. The gate-level circuits are
optimized directly.

Since its introduction, CGP remains the most powerful evolutionary tech-
nique in the domain of logic synthesis and optimization [9]. In this area, a linear
form of CGP is preferred today. CGP models a candidate circuit having ni PIs
and no POs as a linear 1D array of nn configurable nodes. Each node has na
inputs and corresponds with a single gate with up to na inputs. The inputs can
be connected either to the output of a node placed in the previous L columns

6 Jitka Kocnova and Zdenek Vasicek

or directly to PIs. This avoids a feedback. The function of a node can be chosen
from a set of nf functions. Depending on the function of a node, some of its
inputs may become redundant. In addition to that, the fixed number of nodes
nn does not mean that all the nodes contribute to the POs. These key features
allow redundancy and flexibility of CGP.

The candidate circuits are encoded as follows. Each PI as well as each node
has associated an unique index. Each node is encoded using na + 1 integers
(x1, · · · , xna , f) where the first na integers denote the indices of its fanins and
the last integer determines the function of that node. Every candidate circuit is
encoded using nn(na + 1) + no integers where the last no integers specify the
indices corresponding with each PO.

CGP is a population oriented approach which operates with 1 + λ candidate
solutions. The initial population is seeded by the original circuit ought to be
optimized. Every new population consists of the best circuit chosen from the
previous population and its λ offspring created using a mutation operator that
randomly modifies up to h integers. Considering the CGP encoding, a single
mutation causes either reconnection of a gate, reconnection of primary outputs
or change in function of a gate. The selection of the individuals is typically based
on a cost function (e.g. the number of active nodes). In the case that there are
more individuals with the same score, the individual that has not served as a
parent will be selected as the new parent. This procedure is typically repeated
for a predefined number of iterations.

3 The proposed method

Let C be a combinational circuit described at the level of common gates repre-
sented by a Boolean network N consisting of |N | nodes. Each node corresponds
with a single gate in C. The pseudo-code of the proposed optimization procedure
based on evolutionary resynthesis is shown in Algorithm 1.

Firstly a node which may potentially lead to the best improvement of N is
determined. Since the identification of this node itself is a nontrivial problem,
some heuristic needs to be implemented. The size of transitive fan-in cone, level
of the node or a more complex information can be used to determine the most
suitable candidate. Then, a working area (window) is extracted from the Boolean
network. This procedure starts with computation of the reconvergence-driven cut
C as described in Section 2.2. From the practical reasons, is also beneficial to
limit the size of C to be able to enumerate a large number of sub-circuits in a
reasonable time. Hence, we can define four parameters: cmin and cmax restricting
the volume of C (cmin < cmax), and kmin and kmax (kmin ≤ |C|≤ kmax) limiting
the size of cut (feasibility).

This step is followed by expansion of the cut C into a window W , i.e. expan-
sion of the set of leaf nodes to a set of contained nodes. In addition to the nodes
inside the cut, we should consider also all nodes that are not contained in the
cut but have fanins inside the cut. Our expansion is similar to that employed in
the resubstitution [2] where transitive fanout of C is considered, however, we do

Towards a Scalable EA-based Optimization of Digital Circuits 7

Algorithm 1: EA-based resynthesis

Input: A Boolean network N
Output: Optimized network N ′, cost(N ′) ≤ cost(N)

1 N ′ ← N
2 while terminated condition not satisfied do
3 m← identify the best candidate root node m ∈ N ′

4 C ← ReconvergenceDrivenCut(m)
5 W ← ExpandCutToWindow(m, C)
6 if W is not a suitable candidate then
7 continue

8 W ′ ← OptimizeNetworkUsingEA(W)
9 if cost((N ′ \W) ∪W ′) < cost(N ′) then

10 N ′ ← (N ′ \W) ∪W ′

11 return N ′

not impose any limit on the number of included nodes or their maximum level.
The process of cut identification and the subsequent expansion is illustrated in
Fig. 2.

During the expansion, three set of nodes are created: the set of internal nodes
I, the set of leaves L and the set of root nodes R. L contains nodes that will
serve as PIs of the temporary network used in the subsequent optimization.
Similarly R contains nodes whose outputs have to be connected to POs. Note
that R contains not only the root node m but also other nodes whose fanouts
are outside of the window (see Fig. 2). It holds that C ⊆ L since the expansion
may cause that some leaves of C become a fanout of a node inside the window.
Two situations can happen for a leaf node. If all fanins are inside the window,
the leaf can be simply removed from L. Otherwise, all fanins of the original leaf
node need to be added to L (the case of C1 in Fig. 2). This procedure has to
be repeated iteratively to ensure that there are no leaves having a fanin already
included the window.

Resynthesis is then applied to the window. Each window that is not suit-
able for the subsequent optimization is skipped. The motivation is to eliminate
execution of a relatively time-consuming resynthesis for the windows that are
unlikely to lead to any improvement. The identification of the suitable windows
can be based on the size of W (small windows are filtered out) or a combination
of size of C and size of W (thin windows are filtered out). In addition to that,
we can use the information about the difference among level of the root node
and leaves of C.

The resynthesis is performed by means of the CGP. At the beginning, each
node in the window is assigned an unique index and chromosome correspond-
ing with the nodes in the window is created. This chromosome is then used
to seed the initial population. The evolutionary optimization is executed for a
limited number of iterations. The number of iterations should be determined
heuristically. The more iterations are allowed, the higher improvement can be

8 Jitka Kocnova and Zdenek Vasicek

m

C1

C2 C3 C4L L L L

R

R R

RR

C1*
1 2 3 4

5 6

78 9 10

11 12

Fig. 2: Example of the window created using the proposed algorithm. The set
of contained nodes of a 4-feasible cut C = {C1, C2, C3, C4} rooted in node m is
highlighted using the filled nodes. The hatched nodes are added to the window
during the expansion of the cut. As a consequence of that, leave C1 is replaced by
C∗1 . The root and leaves of the window are denoted as R and L, respectively. The
nodes in the window have assigned an index used to uniquely identify each node
in the CGP. One of the many possibilities how to encode the window using CGP
is for example: (2,3,AND) (2,3,OR) (4,1,INV) (1,5,XOR) (8,2,AND) (3,4,NOR)
(9,10,AND) (6,10,OR) (7,8,9,11,12).

achieved. On the other hand, many iterations on a small window wastes time.
Finally, the optimized logic network W ′ is evaluated w.r.t. N ′ and if it performs
better, it replaces all non-leaf nodes included in W . The whole optimization al-
gorithm is terminated when a predefined number of iterations or a given runtime
is exhausted.

Table 1 compares the proposed method with various methods for optimiza-
tion of logic circuits available in the literature. Compared to the conventional
approaches, we consider windows consisting of substantially higher number of
gates. In addition to that, we do not impose any limits on the number of window
inputs and outputs. Compared to the evolutionary approach [3], substantially
larger sub-circuits identified using a different scoping method (windowing based
on reconvergence driven cuts) are considered during resynthesis.

4 Experimental evaluation

4.1 Experimental setup

The proposed method was implemented in C++ as a part of Yosys open synthesis
suite [17]. The advantage of this tool, among others, is that it allows us to directly
manipulate with Verilog files and that it integrates ABC [18], a state-of-the-art
academic tool for hardware synthesis and verification.

To evaluate the proposed approach, we used 28 highly optimized real-world
circuits and optimized them by means of the proposed as well as current state-
of-the-art approach. Nineteen Verilog netlists are taken from IWLS’05 Open

Towards a Scalable EA-based Optimization of Digital Circuits 9

Table 1: Comparison of the optimization approaches according to the applied
constraints. Parameters kmin and kmax determine the minimum allowed and
maximum acceptable number of inputs of the accepted windows. Parameters
cmin and cmax represent the restrictions applied to the volume of the windows.

approach kmin kmax cmin cmax scoping method

rewriting [15, 2] – 4 – – cut computation
redundancy removal [2] 6 12 – – windowing
conventional resynthesis [16] – – – 3360 (30%) windowing (various)
evolutionary resynthesis [3] 1 10 8 50 radius-based windowing
proposed approach – – 10 104 cut-based windowing

Cores benchmarks, the remaining nine netlists represent various arithmetic cir-
cuits1. The circuits were optimized by ABC (several iterations of ABC command
‘resyn’) and mapped to gates using a library of common 2-input gates including
XORs/XNORs gates (ABC command ‘map’). After mapping, optimization by
the proposed and global method was executed and final number of mapped gates
in circuits was examined. All of the optimized circuits were formally verified w.r.t
their original form (ABC command ‘cec’).

The goal of this paper is to evaluate performance of the proposed method
w.r.t. the state-of-the-art EA-based method (denoted as global) applied to the
whole Boolean network and to compare both methods to the best result pro-
duced by the ABC. Both methods operate at the level of optimized and mapped
Boolean networks to avoid the bias of AIG representation. The procedure Op-
timizeNetworkUsingEA is based on the CGP implemented as described in Sec-
tion 2.3 with the following parameters: na = 2, λ = 1, h = 2, nn = |W |. A
single call of this procedure is executed for the global method (the procedure
takes the whole Boolean network and returns its optimized version). On contrary,
several calls of this procedure are executed in the proposed method. The termi-
nation conditions are designed as follows. The global method terminates when
niters iterations are exhausted. One iteration corresponds with evaluation of a
single candidate solution. In the case of the proposed method a simple divide-
and-conquer strategy is employed. The proposed method is allowed to create
ncuts cuts. For each cut, the OptimizeNetworkUsingEA is allowed to perform
niters/ncuts iterations. This strategy is relatively naive because it supposes that
the computation effort does not depend on the size of the window but it helps to
fairly evaluate the impact of the proposed method. It ensures that exactly the
same number of generations are evaluated in both cases. In this paper, we use
niters = 1010 iterations. Only windows whose volume is larger than 10 and less
than 104 nodes are accepted, i.e. cmin = 10, cmax = 104. The root node m is
chosen randomly in this study. This strategy simplifies the problem but it may
lead to degradation of the performance especially if many unacceptable windows

1 All the benchmarks are taken from https://lsi.epfl.ch/MIG

10 Jitka Kocnova and Zdenek Vasicek

are produced. If this happens in 10% cases, for example, the total number of
effective generations is in fact reduced to 90%. The only criterion in the fitness
function considered in this paper is the area on a chip expressed as the num-
ber of gates. For each method and each benchmark, five independent runs were
executed to obtain statistically reasonable results.

4.2 Experimental results

The overall results are summarized in Tab. 2. The first three columns contain
information related to the benchmarks (name, number of PIs and POs). The
next two columns show parameters of the mapped circuits and those numbers
serve as a baseline for our comparison – the number of gates and logic depth
is provided. Then, the achieved results expressed as the relative reduction with
respect to the baseline are reported for the proposed and global method. For
each method, we report the average and the best obtained improvement. The
numbers are calculated across all independent runs.

The best results are very close to the average ones which suggests that
the both EA-based methods are stable although they are in principle non-
deterministic. According to the number of highlighted cases showing the bet-
ter results, the proposed method performs substantially better considering the
average as well as the best results. It won in 22 out of 28 cases. There are
even cases, when the global method provided none or nearly none improvement
(see e.g. benchmarks DSP, des perf, ethernet, systemcaes and so on). The av-
erage reduction on the IWLS’05 benchmarks is slightly better in favor of the
global method, but it is affected mostly by five cases (mem ctrl, pci spoci ctrl,
spi, systemcdes, and tv80), where the global method provided substantially bet-
ter results. Looking at the arithmetic circuits, the global method was able to
slightly improve only two circuits. In other cases, the reduction is negligible.
We analyzed the five cases where the global method outperformed the proposed
one and concluded that the global method works well especially for small in-
stances (less than 104 gates) that have a reasonable depth (10 to 25 levels). The
global optimization of circuits with large depth is unsatisfactory. A substantial
improvement is achieved on the arithmetic circuits. The number of gates is re-
duced by nearly 15% on average. The highest reduction, 30.1%, is recorded for
hamming benchmark. The detailed analysis revealed that this was possible due
to better handling of XORs/XNORs compared to ABC and also by a relatively
huge redundancy of the original circuit optimized by ABC. The relative number
of AND/OR/NAND/NOR gates remained nearly the same (around 74%). The
number of XORs/XNORs increased from 10% to 15%.

A more detailed analysis is shown in Tab. 3 where we reported the compu-
tational effort required to reduce the benchmark circuits by 1%, 5% and 10%.
The table shows the mean number of generations that have to be evaluated to
obtain a circuit whose number of gates is reduced by a given level. The empty
cells mean that none of the evolutionary runs produced circuit satisfying the
required condition. This can happen either because of the insufficient number of
generations or because it is in principle impossible to obtain such a circuit (we

Towards a Scalable EA-based Optimization of Digital Circuits 11

Table 2: Comparison of the proposed and global method against ABC. The
columns ‘Impr. proposed‘ and ‘Impr. global‘ report the relative improvement in
the number of gates compared to the optimized circuits obtained using ABC. Col-
umn ‘ABC‘ contains parameters of the optimized circuits after mapping (’gates’
is the number of gates, D is logic depth).

ABC Impr. proposed Impr. global [6]
Benchmark PIs POs gates D avg best avg best

DSP 4223 3792 43491 45 3.6% 3.6% 0.0% 0.0%
ac97 ctrl 2255 2136 11433 10 2.9% 2.9% 1.4% 1.4%
aes core 789 532 21128 20 2.9% 2.9% 0.6% 1.7%
des area 368 70 5199 25 6.0% 6.1% 2.1% 2.3%
des perf 9042 1654 78972 16 1.8% 1.8% 0.0% 0.1%
ethernet 10672 10452 60413 23 0.5% 0.5% 0.0% 0.0%
i2c 147 127 1161 12 9.2% 9.2% 10.0% 10.7%
mem ctrl 1198 959 10459 24 7.0% 7.0% 24.8% 25.4%
pci bridge32 3519 3136 19020 21 3.5% 3.5% 0.5% 0.6%
pci spoci ctrl 85 60 1136 15 18.3% 18.5% 34.8% 35.7%
sasc 133 123 746 8 6.2% 6.2% 2.4% 2.8%
simple spi 148 132 822 11 5.5% 5.7% 4.4% 4.6%
spi 274 237 3825 26 5.6% 5.6% 13.5% 20.2%
ss pcm 106 90 437 7 5.7% 6.7% 2.3% 2.3%
systemcaes 930 671 11352 27 11.9% 12.3% 0.0% 0.0%
systemcdes 314 126 2601 25 4.8% 5.0% 9.1% 9.9%
tv80 373 360 8738 39 6.6% 6.9% 11.1% 11.3%
usb funct 1860 1692 15405 23 5.8% 5.9% 2.6% 2.6%
usb phy 113 73 452 9 13.9% 14.0% 12.2% 12.2%

average (IWLS’05 benchmarks) 15620 20 6.4% 6.5% 7.0% 7.6%

mult32 64 64 8225 42 16.5% 16.6% 0.0% 0.0%
sqrt32 32 16 1462 307 22.3% 24.3% 3.0% 3.0%
diffeq1 354 193 20719 218 11.5% 11.5% 0.0% 0.0%
div16 32 32 5847 152 15.7% 15.8% 0.0% 0.0%
hamming 200 7 2724 80 28.6% 30.1% 14.6% 14.6%
MAC32 96 65 7793 55 7.7% 7.8% 0.0% 0.0%
revx 20 25 8131 171 14.5% 14.5% 0.0% 0.1%
mult64 128 128 21992 190 7.4% 7.4% 0.3% 0.5%
max 512 130 3719 117 5.3% 5.3% 0.7% 0.8%

average (arithmetic benchmarks) 8956 148 14.4% 14.8% 2.1% 2.1%

are already at the optimum or close to the optimum). Looking at the first two
columns showing the computation effort required for reduction by 1%, we can
easily identify that the global method converges faster compared to the proposed
method. On the other hand, it has tendency to stuck at a local optima which is
evident especially on more complex benchmarks (arithmetic circuits having large
logic depth and complex circuits consisting of tens thousands of gates). Nearly
none improvement was achieved for arithmetic circuits. The only exception is

12 Jitka Kocnova and Zdenek Vasicek

Table 3: The average number of CGP generations needed to achieve 1%, 5%,
and 10% reduction

1% improvement 5% improvement 10% improvement
Benchmark global proposed global proposed global proposed

DSP > 1010 8 · 108 – – – –
ac97 ctrl 45 · 107 7 · 108 – – – –
aes core > 1010 1 · 109 – – – –
des area 4 · 107 98 · 107 > 1010 11 · 108 – –
des perf > 1010 3 · 109 – – – –
i2c 5 · 105 28 · 107 35 · 105 5 · 108 7 · 109 > 1010

mem ctrl 5 · 105 27 · 107 5 · 105 45 · 108 5 · 105 > 1010

pci bridge32 > 1010 78 · 107 – – – –
pci spoci ctrl 5 · 105 107 5 · 105 14 · 107 106 42 · 107

sasc 21 · 106 15 · 105 > 1010 43 · 106 – –
simple spi 5 · 106 86 · 106 > 1010 72 · 107 – –
spi 5 · 106 416 · 106 65 · 106 3 · 109 72 · 106 > 1010

ss pcm 4 · 106 108 > 1010 2 · 108 – –
systemcaes > 1010 12 · 107 > 1010 17 · 108 > 1010 7 · 109

systemcdes 65 · 105 17 · 107 55 · 106 > 1010 74 · 107 > 1010

tv80 5 · 105 231 · 106 26 · 106 3 · 109 18 · 107 > 1010

usb funct 94 · 106 575 · 106 > 1010 65 · 108 – –
usb phy 5 · 105 12 · 106 25 · 105 19 · 106 55 · 107 17 · 107

average 2.8 · 109 5.2 · 108 4.6 · 109 2.4 · 109 3 · 109 7.2 · 109

mult32 > 1010 72 · 106 > 1010 48 · 107 > 1010 2 · 109

sqrt32 5 · 105 19 · 106 37 · 105 11 · 107 > 1010 39 · 107

diffeq1 > 1010 2 · 108 > 1010 16 · 108 > 1010 67 · 108

div16 > 1010 13 · 107 > 1010 5 · 108 > 1010 24 · 108

hamming 5 · 105 17 · 106 5 · 105 12 · 107 2 · 106 5 · 108

MAC32 > 1010 6 · 107 > 1010 96 · 107 – –
revx > 1010 36 · 107 > 1010 94 · 107 > 1010 5 · 109

mult64 > 1010 39 · 107 > 1010 73 · 108 – –
max > 1010 91 · 106 > 1010 96 · 107 – –

average 7.7 · 109 2 · 108 7.9 · 109 1.5 · 109 8.3 · 109 2.8 · 109

the benchmark circuit ‘hamming’. The proposed method converges in some cases
slowly but it provides better results when we enable to run it longer. See for ex-
ample benchmarks ‘des area‘, ‘simple spi‘, ‘ss pcm‘, ‘usb funct‘, or ‘hamming‘.
In these cases the proposed method requires more generations to reduce the cir-
cuits by 1%, but substantially less generations are needed on average to achieve
5% reduction. The effect of slow convergence is especially noticeable on ‘ham-
ming‘ circuit, where approximately 250 times more generations were needed to
reduce the original circuit by 5% and 10% percent. Despite of that, the proposed
method was able to reach 30.1% reduction while the global method got stuck
at 14.6%. The typical convergence curves for four benchmark circuits are shown
in Fig. 3. The first three plots show how the global methods usually got stuck

Towards a Scalable EA-based Optimization of Digital Circuits 13

at local optima. The last plot depicts the situation where the global method
performs better compared to the proposed one.

(a) sasc (b) hamming

(c) sqrt32 (d) i2c

Fig. 3: Typical convergence curves for four chosen benchmark circuits. The lower
value (number of gates) the better result.

We assume that the slow convergence is caused by the fact that each sub-
circuit produced by the proposed windowing algorithm is optimized for a fixed
number of generations independently on its parameters (the number of gates,
the number of PIs or POs, and so on). This simplifies the problem but leads to a
potential inefficiency. Many generations can be wasted to optimize small circuits.
In order to investigate this fact, we analyzed what is the average volume of the
sub-circuit. The results are summarized in Tab. 4. The table contains the average
number of leaves, roots and volume of the windows produced by the proposed
windowing algorithm. Despite using a simple strategy for selecting a root node,
the window parameters are relatively good and sub-circuits of a reasonable vol-
ume are produced. The number of leaves |L| determining the number of primary
inputs of the sub-circuit optimized by evolution is substantially higher compared
to the numbers used in rewriting. Compared to the rewriting, a relatively com-

14 Jitka Kocnova and Zdenek Vasicek

plex portions of the original circuits are chosen for subsequent optimization. This
could explain the reason, why the proposed EA-based method is able to achieve
such reduction compared to the conventional state-of-the-art synthesis.

Table 4: Average number of leaves, roots and volume of the windows produced
by the proposed windowing algorithm. The averages are reported for all windows
(first three columns) and those leading to a reduction (last three columns).

windows
all created causing reduction

Benchmark |L| |R| volume |L| |R| volume

DSP 32 26 53 46 38 86
mem ctrl 27 25 38 28 26 44
pci spoci ctrl 14 13 21 18 19 32
systemcaes 22 15 35 14 13 26
systemcdes 27 26 51 38 39 78

mult32 20 16 34 26 21 52
sqrt32 33 29 62 20 17 37
diffeq1 30 27 53 28 26 55
div16 32 28 50 25 24 44
hamming 30 26 44 26 24 45

We analyzed all the evolutionary runs across all benchmarks circuits and
determined the maximum number of generations that caused a reduction of a
sub-circuit. For each run of CGP we recorded the last generation that caused a
change in the number of gates together with the volume of the optimized sub-
circuit. The obtained numbers are plotted as a function of sub-circuit volume
using a boxplot in Fig. 4. As expected, the more nodes are there in the sub-
circuit the more CGP generations are typically used to optimize it. We can
also see that the dependence between these two values is exponential – this is
illustrated also by the blue curve representing polynomial interpolation of the
median value. As the volume of the window increases, the number of occurrences
of such cases decreases (see the numbers above each boxplot showing how many
times we seen a window having volume between X and X+10). Usually, small
windows are produced. Windows up to 45 nodes were produced in more than
77% cases. Due to this fact, the interpolation is limited to 150 nodes because
there is insufficient number of results for the bigger windows.

5 Conclusion

Compared to the conventional logic synthesis, state-of-the-art EA-based opti-
mization is able to produce substantially better results but at the cost of a higher
run time. Unfortunately, the run time increases with the increasing complexity

Towards a Scalable EA-based Optimization of Digital Circuits 15

Fig. 4: Boxplots showing the number of generations that caused removal of a
gate. The numbers above each boxplot show the number of occurrences of the
window of a certain volume.

of the Boolean networks. This paper addresses this problem by combining the
EA-based optimization with windowing that allows to work on a smaller portions
of the original Boolean network. Even though we used a very simple strategy
of root node selection which may degrade the capabilities of the resynthesis,
the proposed method is able to outperform the original EA-based optimization
applied to the whole Boolean networks. The number of nodes w.r.t the original
method was improved by 9.2% on average. Even though only area was analyzed
in this study, the depth of the optimized circuits is comparable with the original
circuits.

In our future work, we would like to implement an adaptive strategy that
modifies the maximum number of generations according to the size of the opti-
mized logic circuit. In addition to that, we would like to focus on improvement
of root node selection strategy. The question here is whether the result would
be better if the cut is built from a node near to the previously chosen one.

6 Acknowledgments

This work was supported by The Ministry of Education, Youth and Sports of the
Czech Republic – INTER-COST project LTC18053 and by the Brno University
of Technology project FIT-S-17-3994.

16 Jitka Kocnova and Zdenek Vasicek

References

1. Mishchenko, A., Chatterjee, S., Brayton, R.: DAG-aware AIG rewriting: a fresh
look at combinational logic synthesis. In: 2006 43rd ACM/IEEE Design Automa-
tion Conference. pp. 532–535 (July 2006)

2. Mishchenko, A., Brayton, R.: Scalable logic synthesis using a simple circuit struc-
ture. In: Int. Workshop on Logic and Synthesis. pp. 15–22 (2006)

3. Sekanina, L., Ptak, O., Vasicek, Z.: Cartesian genetic programming as local opti-
mizer of logic networks. In: 2014 IEEE Congress on Evolutionary Computation.
pp. 2901–2908. IEEE CIS (2014)

4. Fiser, P., Schmidt, J., Vasicek, Z., Sekanina, L.: On logic synthesis of conventionally
hard to synthesize circuits using genetic programming. In: 13th IEEE Symposium
on Design and Diagnostics of Electronic Circuits and Systems. pp. 346–351 (2010)

5. Fiser, P., Schmidt, J.: Small but nasty logic synthesis examples. In: Proc. 8th Int.
Workshop on Boolean Problems. pp. 183–190 (2008)

6. Vasicek, Z.: Cartesian GP in optimization of combinational circuits with hundreds
of inputs and thousands of gates. In: Proceedings of the 18th European Conference
on Genetic Programming – EuroGP. pp. 139–150. LCNS 9025, Springer Interna-
tional Publishing (2015)

7. Li, N., Dubrova, E.: AIG rewriting using 5-input cuts. In: Proc. of the 29th Int.
Conf. on Computer Design. pp. 429–430. IEEE CS (2011)

8. Lohn, J.D., Hornby, G.S.: Evolvable hardware: Using evolutionary computation to
design and optimize hardware systems. IEEE Computational Intelligence Magazine
1(1), 19–27 (2006)

9. Miller, J., Thomson, P.: Cartesian Genetic Programming. In: Proc. of the 3rd
European Conference on Genetic Programming EuroGP2000. LNCS, vol. 1802,
pp. 121–132. Springer (2000)

10. Miller, J.F.: Cartesian Genetic Programming. Springer-Verlag (2011)
11. Vassilev, V., Job, D., Miller, J.F.: Towards the Automatic Design of More Efficient

Digital Circuits. In: Lohn, J., Stoica, A., Keymeulen, D., Colombano, S. (eds.)
Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware. pp. 151–160.
IEEE Computer Society, Los Alamitos, CA, USA (2000)

12. Tao, Y., Zhang, L., Zhang, Y.: A projection-based decomposition for the scalability
of evolvable hardware. Soft Computing 20(6), 2205–2218 (Jun 2016)

13. Stomeo, E., Kalganova, T., Lambert, C.: Generalized disjunction decomposition
for the evolution of programmable logic array structures. In: First NASA/ESA
Conference on Adaptive Hardware and Systems (AHS’06). pp. 179–185 (2006)

14. Vasicek, Z., Sekanina, L.: Formal verification of candidate solutions for post-
synthesis evolutionary optimization in evolvable hardware. Genetic Programming
and Evolvable Machines 12(3), 305–327 (2011)

15. Fiser, P., Halecek, I., Schmidt, J.: Are xors in logic synthesis really necessary?
In: IEEE 20th International Symposium on Design and Diagnostics of Electronic
Circuits and Systems (DDECS). pp. 138–143 (2017)

16. Fiser, P., Schmidt, J.: It is better to run iterative resynthesis on parts of the circuit.
In: Proc. of the 19th Int. Workshop on Logic and Synthesis. pp. 17–24. Univ. of
California Irvine (2010)

17. Wolf, C., Glaser, J., Kepler, J.: Yosys-a free verilog synthesis suite. In: Proceedings
of the 21st Austrian Workshop on Microelectronics (Austrochip) (2013)

18. Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification
tool. In: Computer Aided Verification. pp. 24–40. Springer Berlin Heidelberg,
Berlin, Heidelberg (2010)

Appendix B

EA-based refactoring of mapped
logic circuits

KOCNOVA Jitka and VASICEK Zdenek
In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS). Sapporo,
Japan, 2019, pp. 1-5, doi: 10.1109/ISCAS.2019.8702084.

57

EA-based refactoring of mapped logic circuits
Jitka Kocnova and Zdenek Vasicek

Brno, Czech Republic
Email: ikocnova, vasicek@fit.vutbr.cz

Abstract—The increasing complexity of the designs and prob-
lematic scalability of original representations led to a shift in
internal representations used in logic synthesis and optimization.
Heterogeneous representations were replaced with homogeneous
intermediate representations. And-inverter graph (AIG) has been
identified as the most promising structure for scalable logic
optimization and many efficient algorithms were implemented on
top of it. However, the inability of AIG to efficiently represent
XOR gates together with heuristic nature of logic optimization
algorithms leads to some inefficiency causing that the logic can
be further minimized even after it has been mapped. This paper
presents an optimization technique based on refactoring targeting
mapped combinational circuits. It iteratively selects large cones
of logic, optimizes them and returns them back to the original
structure provided that there is an improvement in some metric.
Performance of the method is evaluated on a set of complex
academic and industrial benchmarks. We show that a 9.2%
reduction in area can be achieved in average compared to the
highly optimized results obtained using the academic state-of-
the-art synthesis tool. In average, more than 14% reduction was
observed for arithmetic circuits.

I. INTRODUCTION

The goal of the logic optimization is to transform a subop-
timal solution into an optimal gate-level implementation w.r.t.
given synthesis goals, while technology mapping transposes
it onto its best standard cell implementation. The circuit is
typically represented by a suitable internal representation dur-
ing the logic optimization. Current state-of-the-art logic syn-
thesis tools, such as ABC, represent circuits using a directed
acyclic graph composed of two-input AND nodes denoted as
and-inverter graph (AIG). This representation is simple and
scalable, and leads to simple algorithms. The optimization of
AIGs is based on rewriting algorithm which minimizes size
of AIG by iteratively selecting subgraphs rooted at a node and
replacing them with smaller precomputed subgraphs [1].

Unfortunately, the AIGs suffer from an inherent bias in
representation. While eight of ten possible two-input logic
gates may be represented by means of a single AIG node,
XOR/XNOR gates require three AIG nodes each. The effi-
ciency of synthesis is then limited as it mostly fully relies
on transformations disallowing to increase the number of AIG
nodes. Also, the synthesis algorithms typically do not treat
XORs explicitly – they rely on identification of XORs during
the technology mapping phase which works independently on
the logic optimization phase. The ability to capture XOR gates
is, however, essential for efficient representation of arithmetic
and XOR-intensive circuits [4].

To address this problem, e.g. binary decision diagrams
(BDDs) can be employed [7], [8]. Due to their limited scalabil-

ity, Amaru et al. employed a two step synthesis process based
on a selective and distinct manipulation of AND/OR and XOR-
intensive portions of the logic circuit [9]. Fiser et al. introduced
XOR-AIGs to explicitly support XOR gates [10]. Haaswijk
et al. employed XOR majority graphs (XMGs) to extend the
capabilites of exact synthesis oriented on area optimization.

Other authors tried to avoid intermediate representation.
Optimization based on a variant of Genetic Programming
(GP) conducted directly at the level of common gates is
able to provide significantly better results compared to the
state-of-the-art synthesis operating on AIGs [11]. Optimization
is done implicitly without any structural biases. In average,
the method enabled a 34% reduction in gate count on an
extensive set of IWLS benchmark circuits when executed for
15 minutes. A similar approach was successfully applied even
to synthesis of conventionally hard to synthesize circuits [5].
The proposed method is able to optimize the circuits for
which conventional synthesis completely fails. However, the
efficiency of the evolutionary approach deteriorates with the
increasing number of gates because of various scalability
issues inevitably connected with the usage of GP.

The recent methods need to perform a preprocessing
or circuit decomposition [9] or precomputation of ideal
solutions[10]; other methods rely on XOR-avare transfor-
mations or presence technology cells (eg. XMGs). In order
to eliminate the need for circuit preprocessing, we propose
a novel logic synthesis methodology that implicitly targets
XOR-intensive logic circuits.

II. BACKGROUND

All circuits can be represented by a Boolean network –
a directed acyclic graph (DAG) with nodes represented by
Boolean functions [3]. The sources are the primary inputs
(PIs) of the network and the sinks are the primary outputs
(POs). The output of a node may be an input to other nodes
called fanouts. The inputs of a node are called fanins. An edge
connects two nodes in fanin/fanout relationship.

A. Limiting the scope of Boolean networks

Network scoping is a key operation to ensure a good
scalability of synthesis tools when working with large Boolean
networks. Windowing and cut computation have been proposed
to limit the scope of logic synthesis to work only on a small
portion of a Boolean network [3].

The windowing algorithm takes a node and two integers:
the number of logic levels on the fanin/fanout sides of the
node to be included in the window. Leaf set and root set are

produced. The window is the subset of nodes of the network
containing nodes from root set together with all nodes on paths
between the leaf set and the root set. The nodes in the leaf
set are not included in the window [3]. It is hard to predict
how many logic levels have to be traversed to get a window
of the desired size and required number of leaves. Hence, an
approach based on k-feasible cuts is preferred. A cut of a
node (root node) is a set of nodes of the network (leaves),
such that each path from PI to the root node passes through
at least one leaf. A cut is k-feasible if the number of nodes
(i.e. cut size) in the cut does not exceed k. The volume of
a cut is the total number of nodes encountered on all paths
between the root node and the cut leaves. To maximize the
cut volume, a reconvergence-driven heuristic is applied. The
problem is that the cut computed using a naive bread-first-
search algorithm may include only few nodes and leads to
tree-like logic structures that do not lead to any don’t cares in
the local scope of the node and attempting optimization using
such a cut would be wasted time [3].

A simple and efficient cut computation algorithm producing
a cut close to a given size while heuristically maximizing the
cut volume and the number of reconvergent paths subsumed
in the cut has been introduced in [3]. Our work is based on
the reconvergence-driven cuts and we discuss this algorithm
more in the chapter III.

B. Synthesis of Boolean networks using EAs

Evolutionary algorithms (EAs) have been used to synthesize
logic circuits since late nineties [12], [13]. Miller et al.,
the author of Cartesian Genetic Programming (CGP) [13], is
considered as a pioneer in the field of logic synthesis of gate-
level circuits. Despite of many advantages of this technique,
only small problem instances were typically addressed. The
scalability of CGP has been significantly improved by a SAT-
based CGP simulator driven by counterexamples produced by
the SAT solver [15] [11]. In this area, a linear form of CGP
is preferred today. CGP models a candidate circuit having ni
PIs and no POs as a linear 1D array of nn configurable nodes.
Each node has na inputs and corresponds with a single gate
with up to na inputs. To avoid a feedback, the inputs can
be connected either to the output of a node placed in the
previous L columns or directly to PIs. The function of a node
can be chosen from a set of nf functions. Depending on the
function of a node, some of its inputs may become redundant.
Moreover, the fixed number of nodes nn does not mean that
all the nodes contribute to the POs. These key features allow
redundancy and flexibility of CGP. For details of candidate
circuits encoding, please see [13].

CGP is a population oriented approach operating with 1+λ
candidate solutions. The initial population is seeded by the
original circuit. Every new population contains the best circuit
from the previous population, that has not served as a parent
yet and its λ offsprings created using a mutation operator
that randomly modifies up to h integers. Selection of the
individuals is typically based on a cost function (e.g. number
of active nodes). Considering the CGP encoding, a single

mutation causes either reconnection of a gate, reconnection of
primary outputs or change in function of a gate. This procedure
is typically repeated for a predefined number of iterations.

III. THE PROPOSED METHOD

Let C be a combinational circuit described at the level of
common gates represented by a Boolean network N consisting
of |N | nodes. Each node corresponds with a single gate in
C. The pseudo-code of the proposed optimization procedure
based on evolutionary resynthesis is shown in Algorithm 1.

Algorithm 1: EA-BASED REFACTORING

Input: A Boolean network N , maximum cut size cutsize
Output: Optimized network N ′, cost(N ′) ≤ cost(N)

1 N ′ ← N
2 while terminated condition not satisfied do
3 m← identify the best candidate root node m ∈ N ′

4 C ← ReconvergenceDrivenCut(m, cutsize)
5 W ← ExpandCutToWindow(m, C)
6 if W is not a suitable candidate then
7 continue

8 W ′ ← OptimizeNetworkUsingEA(W)
9 if cost((N ′ \W) ∪W ′) < cost(N ′) then

10 N ′ ← (N ′ \W) ∪W ′

11 return N ′

Firstly a node which may lead to the best improvement
of N is determined. Identification of this node is a nontrivial
problem, so some heuristic needs to be implemented – the size
of transitive fan-in cone, level of the node or a more complex
information can be used. A window is then extracted from the
Boolean network. This procedure starts with computation of
the reconvergence-driven cut (see Section II-A) and is followed
by expansion of the cut C into a window W . In addition to
the nodes inside the cut, we consider also all nodes that are
not contained in the cut but have fanins inside the cut. Our
expansion is similar to that employed in the resubstitution [3]
where transitive fanout of C is considered, but we do limit the
number of included nodes or their maximum level.

Resynthesis is then applied to the window. Each window
potencially leading to no improvement is skipped in order to
eliminate execution of a relatively time-consuming resynthesis.
Identification of suitable windows can be based on the size of
W or a combination of size of C and W (small and thin
windows are skipped). We can also use the information about
the difference among level of the root node and leaves of C.

The expansion leads to the set of internal nodes I , the set
of leaves L and the set of root nodes R. L contains nodes
serving as PIs of the temporary network used in the subsequent
optimization. R contains nodes whose outputs have to be
connected to POs. R contains the root node m and also other
nodes with fanouts outside of the window. It holds that C ⊆ L
since the expansion may cause that some leaves of C become a
fanout of a node inside the window. Two situations can happen
for a leaf node. If all fanins are inside the window, the leaf
can be simply removed from L. Otherwise, all fanins of the

original leaf node need to be added to L. This procedure is
repeated iteratively to ensure that there are no leaves having
a fanin already included the window.

The resynthesis is performed by means of the CGP. The
evolutionary optimization is executed for a limited number
of iterations.The more iterations are allowed, the higher im-
provement can be achieved. However, many iterations on a
small window mean a waste of time. Finally, the optimized
logic network W ′ is evaluated w.r.t. N ′ and if it performs
better, it replaces all non-leaf nodes included in W . The
whole optimization algorithm is terminated when a predefined
number of iterations or a given runtime is exhausted.

IV. EXPERIMENTAL EVALUATION

A. Experimental setup

Our goal is to evaluate performance of the proposed
method w.r.t. the state-of-the-art EA-based method (denoted
as global) applied to the whole Boolean network and to
compare both methods to the best result produced by the ABC.
Both methods operate at the level of optimized and mapped
Boolean networks to avoid the bias of AIG representation.
The procedure OptimizeNetworkUsingEA is based on the
CGP implemented as described in Section II-B with following
parameters: na = 2, λ = 1, h = 2, nn = |W |. A single
call of this procedure is executed for the global method. On
contrary, several calls of this procedure are executed in the
proposed method. The global method terminates after niters
iterations. The proposed method uses a simple divide-and-
conquer strategy. The proposed method is allowed to create
ncuts cuts. For each cut, the OptimizeNetworkUsingEA is
allowed to perform niters/ncuts iterations. In total, niters
evolutionary iterations are evaluated in both cases. This naive
strategy supposes that the computation effort does not depend
on the window size but it helps to fairly evaluate the impact
of the proposed method. In this paper, we use niters = 109

iterations. The cutsize limit is set to 104. Only windows with
more than 10 nodes are accepted. The root node m is chosen
randomly.

This setup was considered the best amongst other setup
combinations of the cutsize (5, 10, 20, 35, 50, 75, 100, 150,
200, 250, 103, 104) and niters (103, 105, 107, 109). Experimen-
tal results showed a convergence of the number of removed
cells after approximately niters = 107. cutsize = 104 cells
ensures the possibility of the biggest possible cut creation w.r.t
the root cell placement.

This strategy simplifies the problem but may lead to degra-
dation of the performance if many unacceptable windows are
produced. The only criterion we consider is the area on a
chip expressed as the number of gates. For each method and
each benchmark, five independent runs were executed to obtain
statistically significant results.

B. Results

The proposed method was implemented in C++ and inte-
grated in Yosys open synthesis suite. Tab. I summarizes the
experimental results. The goal was to improve the size of

mapped benchmark circuits optimized at the level of AIG by
ABC. In particular, we took 19 highly optimized circuits from
IWLS’05 Open Cores benchmarks and 9 highly optimized
large arithmetic circuits1.

The circuits were mapped to gates using a library of
common 2-input gates including XORs/XNORs (ABC: ’map’).
After mapping, optimization by the proposed and global
method was executed and final number of mapped gates in
circuits was examined. The circuits were then transformed to
AIG representation (ABC: ’strash’) and compared to the results
from ABC-only optimization. All of the optimized circuits
were formally verified w.r.t their original form (ABC: ’cec’).

Many iterations of resyn script were applied in ABC on the
original verilog benchmarks as described in [16] in order to
obtain the best results for AIG optimization.

The first three columns of Tab. I contain information related
to the benchmarks (name, number of PIs and POs). The next
two columns contain number of nodes and depth of circuits in
the AIG form after application of ABC resyn script. The other
two columns show parameters of the mapped circuits and those
numbers serve as a baseline for our comparison – the number
of gates and logic depth is provided. Then, the achieved
results expressed as the relative reduction w.r.t. the baseline are
reported for the proposed and global method. For each method,
we report the average and the best obtained improvement.
These numbers are calculated from five independent runs.

The best results are very close to the average ones which
suggests that the both EA-based methods are stable although
they are in principle non-deterministic. According to the
number of highlighted cases showing the better results, the
proposed method performs substantially better considering the
average as well as the best results. It wins in 22 out of 28 cases.
The average reduction on the IWLS’05 benchmarks is slightly
better in favor of the global method, but it is affected mostly
by five cases where the global method provides substantially
better results. Looking at the arithmetic circuits, the global
method is able to slightly improve only two circuits. In other
cases, the reduction is negligible. We analyzed the five cases
where the global method outperformed the proposed one and
concluded that the global method works well especially for
small instances (less than 104 gates) that have a reasonable
depth (10 to 25 levels). The global optimization of circuits
with large depth performs unsatisfactory. Compared to ABC, a
substantial improvement is achieved on the arithmetic circuits.
The number of gates is reduced by nearly 15% in average. The
highest reduction, 30.1%, is recorded for hamming benchmark.
The detailed analysis revealed that this was possible due to
better handling of XORs/XNORs and also by a relatively
huge redundancy of the original circuit optimized by ABC.
The relative number of AND/OR/NAND/NOR gates remained
nearly the same (around 74%). The number of XORs/XNORs
increased from 10% to 15%.

Our second experiment evaluates efficiency of the AIG
representation. The last two columns of Tab. I show what

1All the benchmarks are taken from https://lsi.epfl.ch/MIG

TABLE I: Comparison of the proposed and global method (sec. Impr. proposed, Impr. global) w.r.t. the initial number of mapped gates (sec. ABC(mapped))
and the best resulf of ABC (sec. ABC(AIG)). Section ABC(AIG) / ABC(mapped) contains parameters of the optimized circuits before and after mapping (D
is logic depth, G is the number of gates). Last section shows the size of AIG(relative to ABC) when the gate-level circuit is mapped back to AIG.

ABC(AIG) ABC(Mapped) Impr. proposed Impr. global [11] Impr. at AIG level

Benchmark PIs POs AIG D gates D gates avg gates best gates avg gates best proposed global [11]

DSP 4223 3792 39958 41 43491 45 3.6% 3.6% 0.0% 0.0% 0.1% 0.0%
ac97 ctrl 2255 2136 10497 9 11433 10 2.9% 2.9% 1.4% 1.4% 0.7% 1.3%
aes core 789 532 20632 19 21128 20 2.9% 2.9% 0.6% 1.7% -0.8% -0.3%
des area 368 70 5043 24 5199 25 6.0% 6.1% 2.1% 2.3% 3.6% 1.0%
des perf 9042 1654 75561 15 78972 16 1.8% 1.8% 0.0% 0.1% -2.7% -6.8%
ethernet 10672 10452 56882 22 60413 23 0.5% 0.5% 0.0% 0.0% 0.1% -0.1%
i2c 147 127 1009 10 1161 12 9.2% 9.2% 10.0% 10.7% 4.8% 8.1%
mem ctrl 1198 959 9351 22 10459 24 7.0% 7.0% 24.8% 25.4% 2.4% 26.0%
pci bridge32 3519 3136 16812 18 19020 21 3.5% 3.5% 0.5% 0.6% 0.4% 0.5%
pci spoci ctrl 85 60 994 13 1136 15 18.3% 18.5% 34.8% 35.7% 13.4% 33.0%
sasc 133 123 657 7 746 8 6.2% 6.2% 2.4% 2.8% 0.0% -0.2%
simple spi 148 132 770 10 822 11 5.5% 5.7% 4.4% 4.6% 1.1% 0.8%
spi 274 237 3430 24 3825 26 5.6% 5.6% 13.5% 20.2% 1.7% 16.0%
ss pcm 106 90 381 6 437 7 5.7% 6.7% 2.3% 2.3% -0.3% 0.3%
systemcaes 930 671 11014 31 11352 27 11.9% 12.3% 0.0% 0.0% 3.3% -0.4%
systemcdes 314 126 2495 21 2601 25 4.8% 5.0% 9.1% 9.9% 2.2% 5.2%
tv80 373 360 7838 35 8738 39 6.6% 6.9% 11.3% 11.1% 2.9% 12.4%
usb funct 1860 1692 13914 20 15405 23 5.8% 5.9% 2.6% 2.6% 1.4% 2.8%
usb phy 113 73 380 7 452 9 13.9% 14.0% 12.2% 12.2% 3.9% 5.8%

average (IWLS’05 benchmarks) 14611 18 15620 20 6.4% 6.5% 7.0% 7.6% 2.0% 5.5%

mult32 64 64 8903 40 8225 42 16.5% 16.6% 0.0% 0.0% -1.5% 0.0%
sqrt32 32 16 1353 292 1462 307 22.3% 24.3% 3.0% 3.0% 4.2% -4.2%
diffeq1 354 193 21980 235 20719 218 11.5% 11.5% 0.0% 0.0% 0.7% -7.3%
div16 32 32 5111 132 5847 152 15.7% 15.8% 0.0% 0.0% 2.1% -12.0%
hamming 200 7 2607 73 2724 80 28.6% 30.1% 14.6% 14.6% 11.0% -0.6%
MAC32 96 65 9099 54 7793 55 7.7% 7.8% 0.0% 0.0% -9.7% -13.0%
revx 20 25 7516 162 8131 171 14.5% 14.5% 0.0% 0.1% 1.2% -13.0%
mult64 128 128 26024 186 21992 190 7.4% 7.4% 0.3% 0.5% -5.4% -1.0%
max 512 130 2964 113 3719 117 5.3% 5.3% 0.7% 0.8% 0.8% -0.4%

average (arithmetic benchmarks) 9506 143 8956 148 14.4% 14.8% 2.1% 2.1% 0.4% -5.7%

happens when we convert the optimized gate-level netlists to
AIGs. This section contains the relative size improvement for
the best results produced by the proposed and global method
w.r.t. size of the AIGs produced by ABC. We can see that
the average reduction is substantially lower compared to the
reduction achieved on the gate level representation. In many
cases, the AIG of the optimized circuit is even larger than the
original one. However, such a behavior is expectable because
this happens if the number of XORs increases but the overall
number of removed gates is relative small. On the other hand,
when the reduction at the level of gates exceeds a certain level
the reduction is visible also on AIGs. This is evident especially
on the IWLS benchmarks where the global method produces
solutions that clearly dominate. From the perspective of AIGs,
the global method completely failed on arithmetic benchmarks.
The number of AIG nodes substantially increased in almost all
cases. As discussed in the introduction, this simple comparison
demonstrates the limited capabilities of otherwise efficient
AIG representation.

Tab. II shows the average number of leaves, roots and
volume of windows produced by the windowing algorithm on
some benchmarks. Despite using a simple selection strategy,
the parameters are relatively good. The number of leaves |L|
determining the number of primary inputs of the refactored
subcircuit is substantially higher compared to the sizes of cuts
used during rewriting. Number of cut nodes is also satisfactory.
Compared to rewriting, a relatively complex portions of the
original circuits are chosen for subsequent optimization. This

could explain the reason, why the proposed method is able to
achieve such reduction. Detailed analysis revealed that the size
of the windows is typically higher for the arithmetic circuits.

TABLE II: Average parameters of all windows and windows that led to a
reduction (col. successful windows) generated during the refactoring.

all windows successful windows
Benchmark |L| |R| size |L| |R| size

mem ctrl 27 25 38 28 26 44
pci spoci ctrl 14 13 21 18 19 32
systemcaes 22 15 35 14 13 26

mult32 20 16 34 26 21 52
sqrt32 33 29 62 20 17 37
diffeq1 30 27 53 28 26 55
div16 32 28 50 25 24 44
hamming 30 26 44 26 24 45

V. CONCLUSION

Compared to the conventional logic synthesis, state-of-the-
art EA-based optimization is able to produce substantially
better results at the cost of a higher run time that grows
with the increasing complexity of the Boolean networks. This
paper addresses this problem by combining the EA-based
optimization with refactoring that allows to work on a smaller
portions of the original Boolean network. Despite using a very
simple strategy of root node selection which may degrade the
capabilities of the refactoring, the proposed method is able to
outperform the AIG-based as well as the original EA-based
optimization applied to the whole Boolean networks.

REFERENCES

[1] A. Mishchenko, S. Chatterjee, and R. Brayton, “Dag-aware aig rewriting:
a fresh look at combinational logic synthesis,” in 2006 43rd ACM/IEEE
Design Automation Conference, July 2006, pp. 532–535.

[2] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Computer Aided Verification. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 24–40.

[3] A. Mishchenko and R. Brayton, “Scalable logic synthesis using a simple
circuit structure,” in Int. Workshop on Logic and Synthesis, 2006, pp.
15–22.

[4] P. Fiser and J. Schmidt, “The observed role of structure in logic synthesis
examples,” in 18th Int. Workshop on Logic and Synthesis, 2009, pp. 210–
213.

[5] P. Fiser, J. Schmidt, Z. Vasicek, and L. Sekanina, “On logic synthesis of
conventionally hard to synthesize circuits using genetic programming,”
in 13th IEEE Symposium on Design and Diagnostics of Electronic
Circuits and Systems, 2010, pp. 346–351.

[6] P. Fiser and J. Schmidt, “Small but nasty logic synthesis examples,” in
Proc. 8th Int. Workshop on Boolean Problems, 2008, pp. 183–190.

[7] C. Yang and M. Ciesielski, “BDS: a BDD-based logic optimization
system,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 21, no. 7, pp. 866–876, Jul 2002.

[8] N. Vemuri, P. Kalla, and R. Tessier, “Bdd-based logic synthesis for lut-
based fpgas,” ACM Trans. Des. Autom. Electron. Syst., vol. 7, no. 4, pp.
501–525, Oct. 2002.

[9] L. Amaru, P. E. Gaillardon, and G. D. Micheli, “Mixsyn: An efficient
logic synthesis methodology for mixed xor-and/or dominated circuits,”
in 2013 18th Asia and South Pacific Design Automation Conference
(ASP-DAC), 2013, pp. 133–138.

[10] P. Fiser, I. Halecek, and J. Schmidt, “Sat-based generation of optimum
function implementations with xor gates,” in 2017 Euromicro Confer-
ence on Digital System Design (DSD), 2017, pp. 163–170.

[11] Z. Vasicek, “Cartesian GP in optimization of combinational circuits with
hundreds of inputs and thousands of gates,” in Proceedings of the 18th
European Conference on Genetic Programming – EuroGP, ser. LCNS
9025. Springer International Publishing, 2015, pp. 139–150.

[12] J. D. Lohn and G. S. Hornby, “Evolvable hardware: Using evolutionary
computation to design and optimize hardware systems,” IEEE Compu-
tational Intelligence Magazine, vol. 1, no. 1, pp. 19–27, 2006.

[13] J. Miller and P. Thomson, “Cartesian Genetic Programming,” in Proc.
of the 3rd European Conference on Genetic Programming EuroGP2000,
ser. LNCS, vol. 1802. Springer, 2000, pp. 121–132.

[14] V. Vassilev, D. Job, and J. F. Miller, “Towards the Automatic Design
of More Efficient Digital Circuits,” in Proc. of the 2nd NASA/DoD
Workshop on Evolvable Hardware, J. Lohn, A. Stoica, D. Keymeulen,
and S. Colombano, Eds. Los Alamitos, CA, USA: IEEE Computer
Society, 2000, pp. 151–160.

[15] Z. Vasicek and L. Sekanina, “Formal verification of candidate solutions
for post-synthesis evolutionary optimization in evolvable hardware,”
Genetic Programming and Evolvable Machines, vol. 12, no. 3, pp. 305–
327, 2011.

[16] L. Amaru, P. E. Gaillardon, and G. D. Micheli, “Majority-inverter
graph: A new paradigm for logic optimization,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
no. 5, pp. 806–819, 2016.

Appendix C

EA-based Resynthesis: An
Efficient Tool for Optimization of
Digital Circuits

KOCNOVA Jitka and VASICEK Zdenek
In: Genetic Programming and Evolvable Machines 21. Pp 287–319, https://doi.org/10.1007/s10710-
020-09376-3.

63

Genetic Programming and Evolvable Machines manuscript No.
(will be inserted by the editor)

EA-based Resynthesis: An Efficient Tool for
Optimization of Digital Circuits

Jitka Kocnova · Zdenek Vasicek

Received: date / Accepted: date

Abstract Scalability of fitness evaluation was the main bottleneck preventing
adopting the evolution in the task of logic circuits synthesis since early nineties.
Recently, various formal approaches such as SAT and BDD solvers have been in-
troduced to this field to overcome this issue. This made it possible to optimise
complex circuits consisting of hundreds of inputs and thousands of gates. Un-
fortunately, we are facing another problem – scalability of representation. The
efficiency of the evolutionary optimization applied at the global level deteriorates
with the increasing complexity. To overcome this issue, we propose to apply the
concept of local resynthesis in this work. Local resynthesis is an iterative pro-
cess based on the extraction of smaller sub-circuits from a complex circuit that
are optimized locally and implanted back to the original circuit. When applied
appropriately, this approach can mitigate the problem of scalability of represen-
tation. Two complementary approaches to the extraction of the sub-circuits are
presented and evaluated in this work. The evaluation is done on a set of highly op-
timized complex benchmark problems representing various real-world controllers,
logic and arithmetic circuits. The experimental results show that the evolutionary
resynthesis provides better results compared to globally operating evolutionary
optimization. In more than 85% cases, substantially higher number of redundant
gates was removed while keeping the computational effort at the same level. A huge
improvement was achieved especially for the arithmetic circuits. On the average,
the proposed method was able to remove 25,1% more gates.

Keywords Cartesian Genetic Programming · Evolutionary Resynthesis · Logic
optimization

This work was supported by Czech Science Foundation project 19-10137S.

Zdenek Vasicek
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of
Excellence, Czech Republic
E-mail: vasicek@fit.vutbr.cz

Jitka Kocnova
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of
Excellence, Czech Republic
E-mail: ikocnova@fit.vutbr.cz

2 Jitka Kocnova, Zdenek Vasicek

1 Introduction

Logic synthesis, as understood by the hardware community, is a process that trans-
forms a high-level description into a gate-level or transistor-level implementation.
Due to the complexity of the problem, the synthesis process is typically broken
into a sequence of steps. Among others, logic optimization represents an impor-
tant part of the whole process. The goal of the logic optimization is to transform
a suboptimal solution into an optimal gate-level implementation with respect to
given synthesis goals. Due to the scalability issues, the problem is typically rep-
resented using a suitable internal representation. Current state-of-the-art logic
synthesis tools, such as ABC [1], represent circuits using a directed acyclic graph
composed of two-input AND nodes connected by direct or negated edges denoted
as and-inverter graph (AIG). The optimization of AIGs is based on rewriting, a
greedy algorithm which minimizes the size of AIG by iteratively selecting sub-
graphs rooted at a node and replacing them with smaller precomputed subgraphs,
while preserving the functionality of the root node [19]. AIG rewriting is local,
however, the scope of changes becomes global by application of rewriting many
times. In addition to that, resubstitution and refactoring can be employed. Re-
substitution expresses the function of a node using other nodes present in the
AIG [18]. Refactoring iteratively selects large cones of logic rooted at a node and
tries to replace them with a more efficient implementation [19]. Refactoring can
be seen as a variant of rewriting. The main difference is that rewriting selects sub-
graphs containing few leaves because the number of leaves determines the number
of variables of a Boolean function whose optimal implementation is sought.

The AIG representation is simple and scalable, and leads to simple algorithms
but it suffers from an inherent bias in representation. While eight of ten possible
two-input logic gates may be represented by means of a single AIG node, XOR
and XNOR gate require three AIG nodes each. The efficiency of synthesis is then
limited as it mostly fully relies on transformations that disallow an increase of the
number of AIG nodes. It has been shown that there exists a huge class of real-
world circuits for which the synthesis fails and provides very poor results [21,4,3].
In some cases, the area of the synthesized circuits is of orders of magnitude higher
than the known optimum. If a large design is broken down to multiple smaller
circuits and such a failure occurs during resynthesis, we obtain an unacceptably
large circuit.

Various evolutionary approaches working directly at the level of gates were suc-
cessfully applied to address this problem [21,27]. Vasicek demonstrated that the
evolutionary synthesis using Cartesian Genetic Programming (CGP) conducted
directly at the level of common gates is able to provide significantly better results
compared to the state-of-the-art synthesis operating on AIGs [27]. On the average,
the method enabled a 34% reduction in gate count on an extensive set of bench-
mark circuits when executed for 15 minutes. It was observed, however, that the
efficiency of the evolutionary approach deteriorates with an increasing number of
gates. Substantially more generations were required to reduce circuits consisting
of more than ten thousands gates. While [27] focuses strictly on the improvement
of the scalability of the evaluation, Sekanina et al. employed a divide and conquer
strategy to address the problem of scalability of representation [21]. The authors
were able to obtain better results than other locally operating methods reported

EA-based Resynthesis: An Efficient Tool for Optimization of Digital Circuits 3

in the literature, however, the performance of this method was significantly worse
than the evolutionary global optimization proposed in [27].

Motivated by the problem above, we propose to combine the evolutionary opti-
mization with the principle of so called Boolean network scoping. Boolean network
scoping represents a common approach incorporated in the conventional synthesis
tools for maintaining the good scalability of the synthesis process. In particular, we
propose to use an iterative procedure which extracts sub-circuits that are subse-
quently optimized by Cartesian Genetic Programming and implanted back into the
original circuit provided that there is an improvement at the global level. This ap-
proach can be understood as the EA-based resynthesis. The size of the sub-circuits
has impact not only on the scalability of the CGP but also on the efficiency of
the whole optimization process. Small sub-circuits ensures a good scalability of the
evolutionary optimization, but they lead to minor improvements at the global level
because we obtained a method which operates mainly locally similarly to the con-
ventional rewriting. Huge sub-circuits, on the other hand, increases possibilities for
an improvement but the performance of the CGP deteriorates with increasing the
size of the optimized circuit. In order to have a reasonable optimization method,
it is necessary to find a good trade-off between the mentioned two extremes.

Several heuristics for Boolean network scoping on the level of AIGs have been
proposed in the literature (see Section 2.2). These heuristics have typically been
introduced in the context of some more complex algorithms and used as a part
of their functionality. It means that they are tailored to the particular scenario
and need to be modified to be used for our needs. The rewriting, for example,
is designed to work with sub-circuits having at most five inputs and exactly one
output. In our case, we do not need to introduce any hard limits on the number of
inputs or outputs. Compared to the rewriting, the evolutionary resynthesis profits
of a substantially higher number of gates (e.g. low hundreds of gates) that are
more like to be further reduced.

1.1 Goals and Contributions

The work in this paper extends the preliminary results presented in [10] where we
used a method of Boolean network scoping inspired by the conventional method
based on computing so called k-feasible cuts. In this paper, we introduce an alter-
native method and evaluate its parameters compared to the cut-based method as
well as conventional state-of-the-art synthesis. Our goal is to improve the efficiency
of the evolutionary optimization and get rid of some parameters and limitations
connected with the usage of the cut-based method. In addition to that, a more
detailed description and experimental evaluation of both methods is presented.

1.2 Organization

The rest of this paper is organized as follow. Section 2 presents a background
in Boolean networks and network scoping and the related work in the area of
the evolutionary synthesis of digital circuits. Section 3 introduces the proposed
approach to the evolutionary resynthesis of large combinational circuits. Section 4
describes the experimental setup and experiments with the parameter setting.

4 Jitka Kocnova, Zdenek Vasicek

The obtained results are presented and discussed in Section 5. Finally, Section 6
provides the conclusions and some ideas for future work.

2 Background and Related Work

This section presents relevant background on conventional as well as EA-based
optimization of logic circuits and introduces the notation used in the rest of the
paper.

2.1 Boolean Networks

Every circuit can be represented using a Boolean network. A Boolean network is
a directed acyclic graph (DAG) with nodes represented by Boolean functions [18].
The sources of the graph are the primary inputs (PIs) of the network and the sinks
are the primary outputs (POs). The output of a node may be an input to other
nodes called fanouts. The inputs of a node are called fanins. An edge connects
two nodes that are in fanin/fanout relationship. Considering this notion, And-
Inverter Graph is a Boolean network composed of two-input ANDs and inverters.
The network primary inputs are signals that are driven by the environment, there
is no node driving these signals in the network. Similarly, the primary outputs are
signals that drive the environment and are needed by inner network nodes as well.
The size of the network is the number of the nodes (primary inputs and outputs
are not considered).

2.2 Limiting the Scope of Boolean Networks

Network scoping represents a key operation to ensure a good scalability of synthesis
tools when working with large Boolean networks. In addition, it forms an integral
part of rewriting as well as refactoring. Two approaches have been proposed to
limit the scope of logic synthesis to work only on a small portion of a Boolean
network – windowing and cut computation [18].

The windowing algorithm determining the window for a given node takes a
node and two integers defining the number of logic levels on the fanin/fanout sides
of the node to be included in the window. Two sets are produced as the result of
windowing – leaf set and root set. The window of a Boolean network is the subset
of nodes of the network containing nodes from root set together with all nodes
on paths between the leaf set and the root set. The nodes in the leaf set are not
included in the window. The main problem of this algorithm is that it is hard to
predict how many logic levels have to be traversed to get a window of the desired
size and required number of leaves.

A complementary approach based on computing so called k-feasible cuts is
usually preferred to avoid determining the required number of logic levels. A cut
of a node, called root node, is a set of nodes of the network, called leaves, such
that each path from PI to the root node passes through at least one leaf. A cut is
k-feasible if the number of nodes (i.e. cut size) in the cut does not exceed k. The
volume of a cut is the total number of nodes encountered on all paths between the

EA-based Resynthesis: An Efficient Tool for Optimization of Digital Circuits 5

(a) Cut CI = {7, 2, 9} (b) Cut CII = {1, 2, 9}

Fig. 1 Example of two possible 3-feasible cuts for root node m and given Boolean network.
The cut CII is preferred as its volume is four (root node m and contained nodes 5, 7, and 9).
There is only one contained node (node 8) in the case of CI.

root node and the cut leaves. An example of two different 3-feasible cuts is shown in
Figure 1. To maximize the cut volume, a reconvergence-driven heuristic is applied
in practice. The problem is that the cut computed using a naive bread-first-search
algorithm may include only few nodes and leads to tree-like logic structures (see
Fig. 1a showing a cut determined by the naive approach and Fig. 1b showing
the output of reconvergence-driven heuristic). Such a structure does not lead to
any don’t cares in the local scope of the node and attempting optimization using
such a cut would be wasted time. A simple and efficient cut computation algorithm
producing a cut close to a given size while heuristically maximizing the cut volume
and the number of reconvergent paths subsumed in the cut has been introduced
in [18]. As our work is based on the reconvergence-driven cuts, we briefly discuss
this algorithm. The algorithm starts with a set of leaves consisting of a single root
node. This set is incrementally expanded by adding one node in each step of a
recursive procedure. If the set consists of only PIs, the procedure quits. Otherwise,
a non-PI node that minimizes a cost function is chosen from the set of leaves. The
chosen node is removed from the leaf set and all its fanins are included instead of
it. This causes expansion of the cut. If the cut-size limit is exceeded, the procedure
quits and returns the cut before expansion. The cost function returns the number
of new nodes that should be added to the leaf set instead of the removed node.

The k-feasible cuts are important not only for the gate-level logic synthesis but
also for FPGA-based synthesis as a k-feasible cut can be implemented as a k-input
LUT. For resubstitution and FPGA-based mapping, so called maximum fanout
free cone (a subnetwork where no node in the cone is connected to a node not in
the cone) is requested. It means that the cut-based scoping must always produce a
single-output sub-circuits. Otherwise it would be impossible to replace the whole
sub-circuit by a precomputed optimal implementation / a single LUT. Typically,
4-feasible and 5-feasible cuts are used for rewriting-based logic synthesis [18,12].
Small k is used not only to make the cut enumeration possible but also to manage
memory requirements to store the precomputed optimal implementations of all k-
input Boolean functions. For FPGA-based mapping, 5-input and 6-input LUTs are
used. Apart from the rewriting, the reconvergence-driven cuts have been applied to

6 Jitka Kocnova, Zdenek Vasicek

refactoring and resubstitution [18]. Typically, k is between 5 and 12 for refactoring
depending on the computation effort allowed [18].

2.3 Evolutionary Synthesis of Logic Circuits

Advancements in technology developed in the early nineties enabled researchers to
sucessfully apply techniques of evolutionary computation in various problem do-
mains. In the middle nineties, Higuchi and Thompson, two of the most prominent
pioneers, demonstrated that evolutionary algorithms are able to solve non-trivial
hardware-related problems [9,26]. The achievements presented in the seminal pa-
per of Higuchi et al. [9] motivated other scientists to intensively explore a new
and promising research topic. As a consequence of that, new research direction re-
ferred to as Evolvable hardware has emerged [7] focusing on the use of evolutionary
algorithms to create specialized electronics without manual engineering.

The gate-level evolution has been addressed only rarely before the year 2000.
The first results in the area of digital circuit synthesis were reported by Koza
in 1992, who investigated the evolutionary design of even-parity circuits in his
extensive discussions of the standard genetic programming (GP) paradigm [11].
Later, Thompson used a form of direct encoding loosely based on the structure of
an FPGA in his experiment with evolution of a square wave oscillator [26]. Genetic
algorithm has been employed also by Coello who evolved various 2-bit adders and
multipliers [2]. Finally, Miller et al. demonstrated that evolutionary design systems
are not only able to rediscover standard designs as it has been shown in the
past, but they can, in some cases, improve them [17,14]. The method of evolving
digital circuits developed by Miller in 1997 [17] was subsequently revised and a
new evolutionary algorithm known as Cartesian genetic programming (CGP) was
introduced in 2000 [13]. CGP, which is a general form of genetic programming,
was designed to address two issues related to the efficiency of common tree-based
genetic programming. Firstly, as GP represents candidate solutions using trees,
it does not naturally capture the structure of digital circuits that typically form
a directed acyclic graph (DAG). Secondly, GP exhibits the so-called bloat effect
enabling the programs to grow uncontrollably until they reach the GP’s tree-depth
maximum.

Miller is considered as a pioneer in the field of logic synthesis of gate-level cir-
cuits. He utilized CGP to demonstrate that evolutionary computing can improve
results of conventional circuit synthesis and optimization algorithms. As a proof-
of-concept, small arithmetic circuits were considered. A 4-bit multiplier was the
most complex circuit evolved in this category [29]. For the next decade, however,
the problems addressed by the EHW community remained nearly of the same
complexity. The most complex combinational circuits that were directly evolved
during the first two decades of EHW consisted of tens of gates and had around 20
inputs [23]. Many novel techniques including decomposition, development, mod-
ularization, new problem representations and function level evolution have been
proposed [23,22,15,31,20]. The projection-based decomposition approaches such
as [24] or [25] helped to increase the complexity of problem instances that can
be solved by EAs. Despite of that, the gap between the complexity of problems
addressed in industry and EHW continued to widen as the advancements in tech-
nology developed. Evolvable hardware found itself in a critical stage around the

EA-based Resynthesis: An Efficient Tool for Optimization of Digital Circuits 7

year 2010 and it was not clear whether there exists a path forward which would
allow the field to progress [8]. The scalability problem has been identified as one of
the most difficult problems the researchers are faced in this field and that should
be, among others, addressed in the future.

In 2011, the scalability of CGP has been significantly improved by introducing
a SAT-based CGP. The SAT-based CGP uses a modern SAT solver to avoid an
expensive exhaustive circuit simulation commonly used to determine the Ham-
ming distance between a candidate solution and specification [28]. It exploits
the fact that the candidate solutions must be functionally equivalent with their
parent in logic optimization in order to be further accepted. In addition to that,
it exploits the knowledge of differences between parental and candidate circuits.
The efficiency of SAT-based method was further improved by combining a SAT
solver with an adaptive high-performance circuit simulator used to quickly iden-
tify the potential functional non-equivalence [27]. The most advanced SAT-based
CGP employs a simulator that is driven by counterexamples produced by the SAT
solver as suggested in [27]. Neither the original nor the latter approach rely on a
decomposition. The gate-level circuits are optimized directly.

2.4 Cartesian Genetic Programming

Since its introduction, CGP remains the most powerful evolutionary technique
in the domain of EA-based logic synthesis and optimization [13]. In this area, a
linear form of CGP is preferred today. In this case, CGP models a candidate circuit
having ni PIs and no POs as a linear 1D array of nn configurable nodes. Each node
has na inputs and corresponds with a single gate with up to na inputs. Two-input
and single-output nodes are typically used. The inputs can be connected either to
the output of a node placed in the previous L columns or directly to PIs. This
avoids a feedback. The function of a node can be chosen from a set Γ consisting of
|Γ | = nf functions. Depending on the function of a node, some of its inputs may
become redundant. In addition to that, some of the nodes may become redundant
because they are not referenced by any node connected a PO. It means that the
fixed number of nodes nn does not mean that all the nodes are effective used.
The redundant nodes and inputs lead to the presence of non-coding genes in the
genotype. This feature makes the search effective [16].

The candidate circuits are encoded as follows. Each PI as well as each node
has associated an unique index. Each node is encoded using na + 1 integers
(x1, · · · , xna , f) where the first na integers denote the indices of its fanins and
the last integer determines the function of that node. Every candidate circuit is
encoded using nn(na + 1) + no integers where the last no integers specify the
indices corresponding with each PO.

The most common search technique used in connection with the CGP is an
Evolutionary strategy (ES) [13]. Typically (1 + λ)-ES is employed, where λ cor-
responds with the number of new candidate solutions generated from a single
parental solution. In the circuit optimization, the initial population is seeded by
the original circuit ought to be optimized. Every new population consists of the
best circuit chosen from the previous population and its λ offspring created using
a mutation operator. Either point or probabilistic mutation is used in the standard

8 Jitka Kocnova, Zdenek Vasicek

Fig. 2 Example of a CGP individual encoding a logic circuit (one-bit full adder) with
ni = 3 inputs and no = 2 outputs. The individual is encoded using an array of nn = 6
two-input single-output nodes whose functions are chosen from a set of primitive functions
Γ = {NOT,AND,OR,XOR}. Note that the nodes are arranged in a two-dimensional grid for
improved readability. Redundant connections and nodes, i.e. those that do not contribute to
the outputs, are highlighted using a dotted line.

CGP. Point mutation is typically preferred because it is easier to implement and
more efficient than using a probabilistic mutation [16].

The point mutation randomly modifies up to h genes (integers) of a parent
genotype to create an offspring. Considering the CGP encoding, a single mutated
gene causes either reconnection of a node, reconnection of a primary output or
change in function of a node. Due to the presence of redundant genes, the muta-
tion may occur in the redundant part, which means that the mutated genotype
has the same phenotype as its parent. Such a mutation is sometimes denoted as
neutral since the fitness value remains unchanged. To avoid wasted fitness evalua-
tions, several mutation strategies have been proposed [5,16]. Single Active Muta-
tion strategy, for example, mutates the offspring until one active gene is changed.
Another possibility is to detect the neutral mutations and skip the time-consuming
fitness evaluation procedure. Considering the usage of CGP in the optimization of
logic circuits, the latter approach has been typically used [28,27]. Crossover is not
used in the standard CGP because it was found that crossover has little effect on
the efficiency of CGP [16].

The main disadvantage of the CGP encoding in connection with the point mu-
tation operator is the presence of a strong length and positional bias that results
in large portions of the genotype that are always redundant and never used by
any ancestor. To address this issue, several approaches have been proposed [16].
Goldman and Punch, for example, proposed to apply Reorder operation once each
generation that shuffles the position of nodes in the parent [6]. Reorder does not
semantically change the parent but it allows active nodes to be evenly distributed
within the whole genotype. This approach eliminates the length as well as posi-
tional bias and improves the efficiency of the search.

The selection of the individuals is typically based on a cost function (e.g. the
number of active nodes). In the case that there are more individuals with the same
score, the individual that has not served as a parent will be selected as the new
parent. This procedure is typically repeated for a predefined number of iterations.
The logic synthesis is a complex process that has to consider several aspects that
are in principle mutually dependent. Two basic scenarios are typically conducted
in practice – optimizing the power and/or area under some delay constraints, or op-
timizing the delay possibly under some power and/or area constraints. Depending

EA-based Resynthesis: An Efficient Tool for Optimization of Digital Circuits 9

on the goal and required precision, the cost function corresponds either with the
number of gates, logic depth or a more precise but computationally more complex
measure such as area on a chip or circuit delay.

3 The Proposed Approach

Let C be a combinational circuit described at the level of common gates represented
by a Boolean network N consisting of |N | nodes. Each node corresponds with a
single gate in C. The pseudo-code of the proposed optimization procedure based
on evolutionary resynthesis is shown in Algorithm 1.

Algorithm 1: Optimization of digital circuits using EA-based resynthesis

Input: A Boolean network N
Output: Optimized network N ′, cost(N ′) ≤ cost(N)

1 N ′ ← N
2 while terminated condition not satisfied do
3 W ← GetSubcircuit(N) ;
4 if W is not a suitable candidate then
5 continue

6 W ′ ← OptimizeNetworkUsingEA(W)
7 if cost((N ′ \W) ∪W ′) < cost(N ′) then
8 N ′ ← (N ′ \W) ∪W ′

9 return N ′

We propose to apply an iterative process which consists of a sequence of three
steps that are executed in a loop. A working area (Boolean network W) is extracted
from the Boolean network N ′ in the first step. The goal is to obtain a smaller,
preferably compact, circuit which is easier to manipulate with. In the next step,
each W that is not suitable for the subsequent optimization is skipped. The moti-
vation is to eliminate execution of a relatively time-consuming resynthesis for the
windows that are unlikely to lead to any improvement. The identification of the
suitable windows can be based on the size of W (small windows are filtered out)
or a more advanced metric which reflect, for example, the number of inputs and
depth (thin windows are filtered out). In the third step, resynthesis is applied to
the extracted Boolean network. The resynthesis is performed by an evolutionary
algorithm which produces an optimized version of W denoted as W ′. Depending
on the success of the optimization, the cost of W ′ can be either better or the same
as the cost of W . Finally, the optimized logic network W ′ is evaluated with re-
spect to N ′ and if it exhibits a better parameters, it replaces W in N ′. The whole
optimization algorithm is terminated when a predefined number of iterations or a
given runtime is exhausted.

3.1 Working Area Extraction

Two different approaches to the identification and extraction of a suitable sub-
circuit corresponding with the procedure GetSubcircuit in Algorithm 1 are pro-

10 Jitka Kocnova, Zdenek Vasicek

Algorithm GS1: Cut-based procedure GetSubcircuit

Input: A Boolean network N ,
minimum (cmin) and maximum (cmax) volume of cut C,
minimum (kmin) and maximum (kmax) size of cut C
Output: A working area W

1 m← identify the best candidate root node m ∈ N
2 C ← ReconvergenceDrivenCut(m, cmin, cmax, kmin, kmax)
3 W ← ExpandCutToWindow(m, C)
4 return W

posed and evaluated. The first implementation is based on the computation of
the reconvergence-driven cuts which is the preferred approach applied during logic
synthesis. This method, however, may produce subcircuits with a relatively small
volume. To avoid this, we propose an alternative approach loosely inspired by the
windowing introduced in Section 2.2.

The pseudo-code of the cut-based approach is shown in Algorithm GS1. Firstly
a node which may potentially lead to the best improvement of N is determined.
Since the identification of this node itself is a nontrivial problem, some heuristic
needs to be implemented. The size of transitive fanin cone, level of the node or a
more complex information can be used to determine the most suitable candidate.
Then, a working area is extracted from the Boolean network. This procedure starts
with computation of the reconvergence-driven cut C as described in Section 2.2.
From the practical reasons, is also beneficial to limit the size of C to be able to
enumerate a large number of sub-circuits in a reasonable time. Hence, we can define
four parameters: cmin and cmax restricting the volume of C (cmin ≤ |C| ≤ cmax),
and kmin and kmax (kmin ≤ kmax) limiting the size of cut (feasibility).

This step is followed by expansion of the cut C into a window W , i.e. expansion
of the set of leaf nodes to a set of contained nodes. In addition to the nodes

m

C1

C2 C3 C4L L L L

R

R R

RR

C1*
1 2 3 4

5 6

78 9 10

11 12

Fig. 3 Example of the window created using the cut-based algorithm GS1. The set of con-
tained nodes of a 4-feasible cut C = {C1, C2, C3, C4} rooted in node m is highlighted using the
filled nodes. The hatched nodes are added to the window during the expansion of the cut. As a
consequence of that, leave C1 is replaced by C∗1 . The root and leaves of the window are denoted
as R and L, respectively. The nodes in the window have assigned an index (the number located
below a particular node) used to uniquely identify each node in the CGP. One of the many pos-
sibilities how to encode the window using CGP is for example: (2,3,f5) (2,3,f6) (4,1,f7) (1,5,f8)
(8,2,f9) (3,4,f10) (9,10,f11) (6,10,f12) (7,8,9,11,12), where fi ∈ {NOT,AND,OR,XOR,...} is
the function of the node with index i.

EA-based Resynthesis: An Efficient Tool for Optimization of Digital Circuits 11

inside the cut, we should consider also all nodes that are not contained in the
cut but have fanins inside the cut. Our expansion is similar to that employed in
the resubstitution [18] where transitive fanout of C is considered, however, we do
not impose any limit on the number of included nodes or their maximum level.
The process of cut identification and the subsequent expansion is illustrated in
Figure 3.

During the expansion, three set of nodes are created: the set of internal nodes
I, the set of leaves L and the set of root nodes R. L contains nodes that will serve
as PIs of the temporary network used in the subsequent optimization. Similarly R
contains nodes whose outputs have to be connected to POs. Note that R contains
not only the root node m but also other nodes whose fanouts are outside of the
window (see Fig. 3). It holds that C ⊆ L since the expansion may cause that
some leaves of C become a fanout of a node inside the window. Two situations can
happen for a leaf node. If all fanins are inside the window, the leaf can be simply
removed from L. Otherwise, all fanins of the original leaf node need to be added
to L (the case of C1 in Figure 3). This procedure has to be repeated iteratively to
ensure that there are no leaves having a fanin already included the window.

Algorithm GS2: Window-based procedure GetSubcircuit

Input: A Boolean network N ,
minimum (wmin) and maximum (wmax) size of W
Output: A working area W , wmin ≤ |W | ≤ wmax

1 m← select a random node m ∈ N
2 init queue q with m
3 W ← ∅
4 while q not empty ∧ |W | < wmax do
5 m← pop a node from q
6 W ←W ∪ {m}
7 X ← fanin(m) ∪ fanout(m)
8 push all nodes from X \W that are not already in q into q

9 if |W | < wmin then
10 W ← ∅
11 W ← ⋃

m∈W
fanin(m)

12 return W

The pseudo-code of the second approach is given in Algorithm GS2. The pro-
cess starts with the selection of a node m ∈ N that will serve as a pivot. The
pivot serves as an initial point for the expansion that iteratively marks neighbor-
ing nodes of already processed and marked nodes. By neighboring nodes of a node
n we mean those belonging to fanin or fanout of that node. This mechanism en-
ables the window to grow to both directions, i.e. towards PIs as well as POs. After
a finite number of steps, we obtain a subcircuit W of the required size consisting
of the pivot node and its neighbourhood.

To implement the expansion efficiently, we use a queue q whose content is
initialized to m. In each iteration, one node is dequeued from q and included in
W . Then, the neighboring nodes X (those that are directly connected to m) are
identified. Finally, nodes that have not yet been processed and are not already in

12 Jitka Kocnova, Zdenek Vasicek

the queue are enqueued. Two parameters are used to restricting the size of W –
wmin and wmax. The process ends when wmax nodes are included in W or no
more nodes remain (all nodes surrounding m have been processed and included
in W). Subcircuits smaller than wmin are ignored. In the final step (line 11 in
Algorithm GS2), all the fanins of the nodes included in W are added into W .
Then, the leaves of W serve as inputs and roots of W as outputs.

The whole process is illustrated in Figure 4. The procedure starts with node
m. In the first iteration, three nodes are pushed into queue, namely q1, q2 and q3.
In the second iteration q1 is enqueued and three additional nodes are queued: q4,
q5 and q6. Node m also belongs to fanout(q1) but this node is already included in
W and is thus ignored. In the third iteration, q2 is enqueued and processed which
gives also three new nodes q7, q8, and q9. The process ends when q10 is dequeued
and included in W . During the finalization phase, nodes having the index 5 and
4 are added into W because these nodes has to serve as new primary inputs. We
received a subcircuit with five inputs (nodes denoted with L) and five outputs
(output of the nodes denoted as R).

q1

L L L

R

1 2 3

5

6

8 9 10

11 12

m

q2

q3

q4

q5

q6

q7 q8

q9

q10

R R

LL 4
7

13
R

Fig. 4 Example of the window consisting of 10 nodes (wmax = 10) created using the proposed
alternative windowing algorithm GS2. The neighboring nodes added into W are highlighted
using the filled nodes. The hatched nodes are those added during the final step. The nodes
at the bottom are primary outputs. The root and leaves of the window are denoted as R and
L, respectively. The nodes in the window have assigned an index (the number located below
a particular node) used to uniquely identify each node in the CGP. The labels qi inside the
nodes denote the order i in which the nodes were chosen.

Both approaches are complementary and have their own advantages and disad-
vantages. The cut-based windowing algorithm GS1 is in general very sensitive to
the root node selection. In some cases, small windows can be produced. This can
happen especially when the root node is located close to the primary inputs. The
reason is that the cut-based algorithm allows the window grow only towards the
primary inputs. Unfortunately, selection of the best root node represents a hard
problem. Depending on the structure of the circuits to be optimized, the obtained
windows can be narrow and tall.

Identification of the best pivot node in the alternative windowing approach GS2
is also a non-trivial problem but its selection is not as critical as in GS1 because

EA-based Resynthesis: An Efficient Tool for Optimization of Digital Circuits 13

bi-directional expansion is applied in this case. The algorithm allows the window
to grow not only towards to the primary inputs but also to the primary outputs.
Despite of that, it can easily happen that the iterative procedure produces also
unsatisfactory results. This can happen when we select a node with a high number
of fanout nodes. In such a case, we receive the required number of nodes in the
first iteration because the queue is filled with the necessary number of nodes when
visiting the pivot node. Hence depending on the structure of the circuits to be
optimized, the windows can be wide but with small depth.

3.2 Evolutionary Optimization

The procedure OptimizeNetworkUsingEA is implemented as follows. At the begin-
ning, the extracted subcircuit (window) is encoded using the 1D CGP encoding.
The received chromosome is used to seed the initial population. The evolutionary
optimization is then executed for a limited number of iterations (evaluations). The
goal is to optimize the initial solution with respect to a chosen cost function. The
number of iterations should be determined heuristically according to the size of
the initial circuit. The more iterations are allowed, the higher improvement can be
achieved. On the other hand, many iterations on a small circuit wastes time. At
the end, the best obtained circuit is returned and implanted back into the original
Boolean network instead of the original window.

The extracted window is encoded using CGP encoding as follows. All nodes
n ∈W contained in the window W are sorted in the topological order. We receive
a list of nodes having the leaf nodes located at the beginning of the list. Each
node is assigned an unique index which is equal to its position in the list. One
to one mapping is then used to encode the nodes using CGP encoding. Only
non-leaf nodes are encoded in the chromosome because the leaf nodes serve as
inputs. It means that the size of the CGP grid is nn = |W \ L|. There is no
need to introduce any redundancy at this level as shown in [27]. To illustrate the
principle, let us consider the window depicted in Figure 3 consisting of 12 nodes.
The window is mapped to a 1D array of eight CGP nodes (nn = 8). The inputs
are numbered 1 to 4 because four leaf nodes are present. The contained nodes
have associated indices 5 to 12. To encode the first node associated with the index
5, for example, the following three genes are used: (2, 3, AND). The first gene
encodes the connection of the first input (the node 5 is connected to the output
of the leaf node 2), the second gene encodes the connection of the second output
and the third gene encodes the function of the node assuming that the node 5
is AND gate. Five genes are used at the end of the chromosome to encode the
output connections corresponding with five root nodes denoted as R. In summary,
the window is encoded using a string of 8× 3 + 5 = 29 genes.

Let C be a candidate solution (circuit) created by mutating a parental solution
P . The fitness of the candidate solution fitness(C) is determined as

fitness(C) =

{
cost(C), if f(C) ≡ f(P).

∞, otherwise,
(1)

where cost(C) is a cost function to be minimized, f(C) is a Boolean function
representing C and f(P) is a Boolean function corresponding with P . Candidate

14 Jitka Kocnova, Zdenek Vasicek

circuits violating the requirement for the functional equivalence, i.e. those for that
f(C) ≡ f(P) is violated, are assigned a high positive value and are discarded.
Depending on the scenario, the cost function can reflect the number of gates, area
on a chip, logic depth, delay or power consumption.

CANDIDATE
CIRCUIT

PARENTAL
CIRCUIT

CIRCUIT
SIMULATOR

DIFFERENCE
COMPUTATION

SAT SOLVER
maybe

N

USE MODEL TO UPDATE
INPUT VECTORS DB

EQUIVALENT

FITNESS
VALUE

N

Y

model

Input
vectors

EQUIVALENCY
DISPROVED

EQUIVALENT

N

Y

CIRCUIT PARAMETERS
ESTIMATION

(AREA, DELAY, POWER, …)

Fig. 5 Principle of the fitness score computation using the hybrid approach combining a
circuit simulator with a SAT solver.

The computation of the fitness score is implemented as suggested in [27]. The
overall principle is illustrated in Figure 5. The process begins with the computa-
tion of the difference between a candidate and parental circuit. The difference is
computed at the level of the phenotypes, i.e. Boolean networks, and its purpose
is to enable equivalence checking, i.e. to check whether the candidate solution is
functional equivalent with its parent. Only the functionally equivalent solution is
further analysed to determine its cost. In order to perform the equivalence check-
ing as quick as possible, we combine a SAT solver with a circuit simulator to avoid
excessive runtimes caused by some hard-to-solve SAT instances. The key idea is
to use a small number of input vectors to disprove the equivalence using a fast
circuit simulator. If the candidate circuit produces a different output value com-
pared to the parental circuit serving as a reference, we can terminate the fitness
calculation because the candidate circuit violates the specification. If the output
values are the same, we have to use a SAT solver to prove that there is no input
assignment that produces different output values. Randomly generated input vec-
tors have been used in [27]. In this work, we use a slightly advanced version where
we feed the simulation engine with counter examples produced by the SAT solver.
This mechanism helps to further improve the overall efficiency.

EA-based Resynthesis: An Efficient Tool for Optimization of Digital Circuits 15

4 Experimental Setup

The proposed method was implemented in C++ as a part of Yosys open synthesis
suite [30]. The advantage of this tool, among others, is that it allows us to directly
manipulate with Verilog files and that it integrates ABC [1], a state-of-the-art
academic tool for hardware synthesis and verification.

The goal of this work is to evaluate the performance of the proposed approach
and compare the results with the state-of-the-art evolutionary as well as conven-
tional method for optimization of digital circuits. In particular, we consider two
variants of Algorithm 1 that differ in the implementation of the procedure GetSub-
circuit. The first one (denoted as GS1) is based on Algorithm GS1 and the second
one (denoted as GS2) is based on Algorithm GS2. The state-of-the-art is repre-
sented by the EA-based optimization technique that optimizes the whole Boolean
network at once [27]. This approach will be denoted as global. To represent the
conventional tools, we chose ABC synthesis tool which is considered to be the best
academia tool implementing the state-of-the-art synthesis algorithms.

The methods are evaluated on a recent set of benchmark circuits coming from
the logic synthesis community. The benchmark set consists of 28 real-world circuits
available in the form of Verilog netlists1. Nineteen instances are various controllers
taken from IWLS’05 Open Cores benchmarks. The remaining nine instances rep-
resent common arithmetic circuits. At the beginning, all the instances were deeply
optimized by ABC (hundred iterations of ‘resyn‘ script) to make sure that our
optimization algorithms start with the best results produced by the conventional
synthesis. The optimized circuits were then mapped to gates (ABC command
‘map’) using a library of common 2-input gates including XORs/XNORs gates
and exported back to Verilog. The mapped Verilog netlists then served as input
to the EA-based methods. Compared to the ABC, the EA-based methods operate
directly at the level of gates. The gate-level representation was chosen intentionally
because it enables to avoid the bias of the AIG representation and better exploit
the XOR decomposition.

Area-optimization is targeted in this work. It means that the only criterion
in the fitness function considered in this paper is the area on a chip expressed as
the number of gates. It means that the improvement is measured in terms of the
number of removed gates. The other electrical parameters such as delay or power
consumption are not reflected. The line 7 of Algorithm 1 thus reduces to |W ′| <
|W | which is much simpler to evaluate. For each method and each benchmark,
five independent runs were executed to obtain statistically valid results. All of the
optimized circuits were formally verified with respect to their original form (ABC
command ‘cec’) to avoid any error in the evaluation.

The procedure OptimizeNetworkUsingEA is based on the CGP implemented as
described in Section 2.3 and Section 3.2 with the following parameters: na = 2, λ =
1, h = 2, nn = |W |, Γ = {BUF,NOT,AND,OR,XOR,NAND,NOR,XNOR}.
The CGP parameters were chosen in accordance with [27]. The termination con-
ditions are designed as follows. The proposed method is allowed to execute niters

iterations. Each iteration corresponds with a single execution of the OptimizeNet-
workUsingEA procedure. This procedure terminates either when a given number of
evaluations (nevals) is exhausted or when a predefined amount of time (tmax) has

1 The Verilog netlists of the benchmark circuits are taken from https://lsi.epfl.ch/MIG

16 Jitka Kocnova, Zdenek Vasicek

elapsed. The latter condition helps to ensure a good scalability and predictability
of the worst-case CPU time of the optimization which could be enormous espe-
cially in those cases when many hard-to-solve candidate solutions are generated
during the evolution. The global method terminates either when nevals × niters

evaluations are exhausted or when the CPU time reaches tmax × niters seconds.
The strategy with the fixed number of evaluations is relatively näıve because it
supposes that the computation effort does not depend on the size of the window.
On the other hand, it helps to fairly evaluate all evolutionary methods because
they are allowed to evaluate the same number of candidate solutions. We chose
niters = 2×104, nevals = 5×105, and tmax = 10 seconds in this work. This setup
ensures that 1010 candidate solutions are generated and evaluated.

4.1 Parameter Setting

As both algorithms for sub-circuit extraction contain parameters that may have
a huge impact on the efficiency of the optimization process, we need to ensure
proper parameter configuration. To perform a fair evaluation, we ran experiments
that help us to identify a suitable parameter setting. Due to the increased compu-
tational complexity, we conducted the experiments on a limited set of benchmark
circuits. We selected three benchmarks from each class of circuits to have a small
yet representative set of circuits2.

Table 1 Impact of cmin and cmax parameters on the performance of the evolutionary opti-
mization based on GS1 algorithm evaluated on a subset of six benchmark circuits. The best
results in each row are highlighted.

cmin / cmax

5/10 10/20 20/35 35/50 50/75 75/100 5/1000

achieved improvement 5.5% 6.2% 6.5% 6.5% 6.4% 4.7% 8.2%
controllers & logic 3.6% 4.2% 4.3% 4.2% 4.0% 2.3% 5.5%
arithmetic circuits 7.4% 8.2% 8.8% 8.8% 8.8% 7.1% 10.9%

iterations caused reduction 2.8% 3.0% 3.3% 3.3% 3.2% 2.4% 4.1%
controllers & logic 2.6% 2.7% 2.8% 2.6% 2.5% 1.7% 3.4%
arithmetic circuits 3.0% 3.2% 3.8% 4.0% 3.9% 3.2% 4.8%

iterations when EA time-outed 0.0% 0.0% 0.0% 0.0% 0.7% 10.5% 1.8%
controllers & logic 0.0% 0.0% 0.0% 0.0% 0.5% 13.4% 2.0%
arithmetic circuits 0.0% 0.0% 0.0% 0.0% 0.9% 7.6% 1.6%

Four parameters are present in Algorithm GS1. Parameters kmin and kmax

control the feasibility of the cuts. These parameters are fixed to 1 and 10000,
respectively, because our SAT-based CGP optimizer does not need to put any
restriction on the number of circuit inputs. The next two parameters cmin and
cmax determine the size (i.e. the number of gates) of the extracted sub-circuits.
We hypothesize that larger sub-circuits may lead to higher number of reduced
gates in the sub-circuits and better improvement at the global level. To confirm

2 The following circuits were used to determine the best parameter setting: dsp, mem ctrl,
tv80, diffeq1, max, revx

EA-based Resynthesis: An Efficient Tool for Optimization of Digital Circuits 17

this hypothesis and identify a suitable setting, we run many experiments with
different values of cmin and cmax. Results for some settings are summarized in
Table 1. Three efficiency indicators were established and analysed. The first three
rows report the average number of removed gates calculated over all benchmark
circuits (first row) and for each class separately (second and third row). The next
three rows report the average number of iterations that caused a reduction in the
number of gates. The last three rows show the average number of iterations that
produced a sub-circuit whose optimization by CGP time-outed. We firstly tried
to restrict the size of the sub-circuits to a relative narrow range. The numbers
shown in the first six columns, however, suggest that this strategy does not offer
any advantage. The average improvement stagnates and does not increase with
increasing the cmin and cmax. The achieved reduction in the number of gates
is around 8% for the arithmetic benchmarks and 4% for the logic benchmarks.
For higher values (cmin = 75, cmax = 100), we can observe 1.7% drop in the
performance (average improvement is 4.7% vs 6.4%). More than 10% iterations,
on the average, were terminated prematurely due to the tmax restriction for this
setting. This behavior is caused by the fact that many hard-to-solve instances were
generated. It means that the computationally expensive SAT solver needed to be
used to decide equivalence of many complex candidate solutions. As a consequence
of that, less than 1 · 1010 candidate solutions were generated and evaluated in
those cases. Interestingly, the most advantageous setting was the least restrictive
one where we chosen cmin = 5 and cmax = 1000. The lower bound prevents
the cut-based algorithm to generate too small sub-circuits. The upper bound was
chosen to be a value higher than the largest volume that was ever observed on the
reduced benchmark set across all experiments. This setting in practice means that
no restrictions are applied at all.

Table 2 Impact of wmin and wmax parameters on the performance of the evolutionary op-
timization based on GS2 algorithm evaluated on a subset of six benchmark circuits. The best
results in each row are highlighted.

wmin / wmax

5/10 5/20 5/50 5/100 5/1000 5/10000

achieved improvement 7.4% 9.0% 12.6% 14.4% 12.9% 12.2%
controllers & logic 3.9% 5.1% 6.9% 8.8% 13.5% 23.5%
arithmetic circuits 10.8% 12.9% 18.3% 19.9% 12.2% 0.8%

iterations caused reduction 18.7% 19.1% 23.2% 17.8% 5.1% 2.2%
controllers & logic 32.4% 31.0% 37.5% 27.9% 5.1% 4.3%
arithmetic circuits 4.9% 7.1% 8.9% 7.8% 5.0% 0.1%

iterations when EA time-outed 5.6% 16.2% 5.3% 13.2% 76.2% 95.8%
controllers & logic 0.0% 7.7% 5.8% 13.1% 66.5% 92.3%
arithmetic circuits 11.2% 24.7% 4.9% 13.2% 85.9% 99.4%

Note that the root node m is chosen randomly. This strategy simplifies the
problem but it may lead to degradation of the performance especially if many
unacceptable windows are produced. If this happens in 10% cases, for example,
the total number of effective generations is in fact reduced to 90%. Interestingly,
we didn’t observed such degradation. This situation happened only in less than
ten iterations.

18 Jitka Kocnova, Zdenek Vasicek

Algorithm GS2 has only two parameters, namely wmin and wmax, that have
the same meaning as cmin and cmax in Algorithm GS1. Similarly to the cut-based
algorithm, we tried to identify the best values of these parameters. The results of
the experiments on a reduced set of benchmark circuits are summarized in Table 2.
Only the cases where wmin is fixed to the lower bound are listed. Compared to
Algorithm GS1, however, much larger windows has to be accepted because of the
construction of the sub-circuits. The method produces natively larger windows
because all fanins and fanouts are included in the list of potential nodes in each
iteration of the windowing algorithm. As shown in the first row of Table 2, the
efficiency of the optimization increases with increasing wmax and it culminates
for wmax = 100. For sub-circuits having ten times higher number of gates, i.e.
wmax = 1000, the average number of removed gates drops down to 12.9%. In this
case, majority of the CGP runs timed out. The results presented in the last three
rows suggests that Algorithm GS1 produces sub-circuits that are more complex
compared to the cut-based method which tends to produce structures having a
tree-like shape. The choice of the best setting is not as apparent as for GS1 because
it depends on the preferred criteria. As we are primarily interested in the best
gate improvement, we decided to use wmin = 5 and wmax = 100 for the following
experiments.

According to the obtained results, it can be concluded that GS2 performs signif-
icantly better even though there is a relative high amount of premature terminated
CGP runs. The best result was obtained for wmax = 100. In this case, the method
was able to reduce the optimized netlists by 14.4% in average. The best reduction
for the cut-based approach is 8.2% and it was achieved when cmax = 1000.

5 Results

The results from running each method on each problem with the best parameter
setting identified in the previous section are summarized by Table 3. The first three
columns contain information related to the benchmarks: circuit name, the number
of circuit inputs (PIs), and the number of circuit outputs (POs). The next two
columns show parameters of the optimized and mapped circuits produced by ABC.
In particular, the number of gates and logic depth are given and those numbers
serve as a baseline for our comparison. Then, the achieved improvement expressed
as the relative reduction with respect to the baseline is reported for the global
and both proposed methods. For each method, we report not only the median
(section average improvement) but also the best obtained results (section best
improvement). The statistics is based on all five independent runs. For each group
of circuits, the mean improvement is provided. The values in the sixth, seventh and
eight column are calculated from all runs. The values in the remaining columns
are calculated from the data in the table.

All the evolutionary approaches were able to further reduce the size of the
benchmark circuits despite that they were highly optimized by the ABC synthesis
tool. On the average, the evolutionary resynthesis achieved 8.9% circuit size reduc-
tion on controllers and 21.4% reduction on arithmetic circuits. The best results
obtained by a particular method are relatively close to the average ones which
suggests that the evolutionary methods are quite stable although they are in prin-
ciple non-deterministic. According to the number of highlighted cases showing the

EA-based Resynthesis: An Efficient Tool for Optimization of Digital Circuits 19

Table 3 Comparison of the evolutionary methods (global and both proposed) against ABC.
The columns ‘improvement‘ report the relative improvement in the number of gates compared
to the optimized circuits obtained using ABC whose parameters are shown in column ‘ABC‘.
The median is used to determine the average improvement.

ABC Average improvement Best improvement
Benchmark PIs POs gates delay global GS1 GS2 global GS1 GS2

ac97 ctrl 2255 2136 11433 10 1.2% 2.7% 3.1% 1.8% 2.9% 4.0%
aes core 789 532 21128 20 0.1% 2.9% 5.3% 5.6% 2.9% 5.5%
des area 368 70 5199 25 2.0% 5.5% 4.8% 2.6% 6.0% 5.2%
des perf 9042 1654 78972 16 0.0% 1.8% 4.2% 0.1% 1.8% 5.8%
dsp 4223 3792 43491 45 0.0% 3.4% 1.8% 0.0% 3.6% 3.5%
ethernet 10672 10452 60413 23 0.0% 0.4% 1.5% 0.0% 0.6% 1.7%
i2c 147 127 1161 12 10.3% 8.3% 17.9% 10.7% 9.1% 18.3%
mem ctrl 1198 959 10459 24 25.4% 6.9% 10.0% 26.1% 7.0% 12.2%
pci bridge32 3519 3136 19020 21 0.6% 3.4% 3.6% 1.3% 3.5% 4.6%
pci spoci ctrl 85 60 1136 15 36.9% 17.0% 37.1% 38.0% 18.3% 39.1%
sasc 133 123 746 8 2.5% 5.8% 6.8% 2.8% 6.4% 7.2%
simple spi 148 132 822 11 3.9% 4.7% 6.6% 4.4% 5.2% 7.2%
spi 274 237 3825 26 13.9% 5.5% 8.7% 25.1% 6.7% 9.6%
ss pcm 106 90 437 7 2.1% 5.0% 4.8% 2.3% 5.5% 5.3%
systemcaes 930 671 11352 27 0.0% 11.0% 10.6% 0.0% 11.9% 14.7%
systemcdes 314 126 2601 25 10.6% 4.4% 15.5% 11.6% 4.7% 16.3%
tv80 373 360 8736 39 10.3% 6.0% 14.2% 14.7% 6.5% 14.3%
usb funct 1860 1692 15405 23 2.6% 5.6% 9.6% 4.8% 5.8% 11.3%
usb phy 113 73 452 9 11.9% 13.4% 16.8% 12.2% 13.7% 17.7%
average (controllers & logic) 15620.4 20.3 7.5% 5.7% 8.9% 8.6% 6.4% 10.7%
diffeq1 354 193 20719 218 0.0% 11.3% 26.5% 0.0% 11.5% 28.6%
div16 32 32 5847 152 0.0% 15.2% 27.4% 0.0% 16.0% 64.2%
hamming 200 7 2724 80 11.8% 28.3% 58.6% 14.6% 32.9% 59.9%
mac32 96 65 7793 55 0.0% 7.8% 10.1% 0.0% 9.9% 10.6%
max 512 130 3719 117 0.6% 7.2% 5.1% 0.9% 7.4% 5.2%
mul32 64 64 8225 42 0.0% 16.2% 20.9% 0.0% 16.5% 21.4%
mult64 128 128 21992 190 0.0% 5.5% 6.3% 0.0% 5.9% 8.4%
revx 20 25 8130 171 0.0% 13.9% 22.8% 0.1% 14.5% 27.1%
sqrt32 32 16 1462 307 3.0% 21.7% 16.3% 5.1% 22.8% 20.9%
average (arithmetic circuits) 8956.8 148.0 1.8% 12.6% 21.4% 2.3% 15.3% 27.4%

best results in each section of Table 3, the method GS2 introduced in this paper
is the clear winner. Nevertheless, both methods mentioned in this work perform
substantially better considering the average as well as the best results compared to
the global method. Method GS1 won in 21 out of 28 cases. Method GS2 won in 24
cases. There are even cases, when the global method provided none or nearly none
improvement (see benchmarks ‘des perf‘, ‘dsp‘, ‘ethernet‘, ‘systemcaes‘). Looking
at the arithmetic circuits, the global method was able to slightly improve only two
circuits – ‘hamming‘ and ‘sqrt32‘. In other cases, the reduction is negligible. There
are, however, two problem instances (controller ‘mem ctrl‘ and ‘spi‘) for that the
global method provided very competitive results. In addition there are three cases
(‘aes core‘, ‘pci spoci ctrl‘, ‘tv80‘) where the global method produced results that
are very close to the best one obtained by the proposed methods. The common
feature of these five cases is a very steep convergence curve (see Figure 6 which
contains the convergence curve for ‘spi‘ controller). We tried to identify the exact
reason for that but it looks that such a behaviour is a result of the combination
of several factors. It can be concluded, in general, that the global method works

20 Jitka Kocnova, Zdenek Vasicek

Table 4 The average number of generated and evaluated candidate solutions needed to achieve
1%, 5%, and 10% reduction. The median is used to determine the average number of evaluations
as well as the average in the summary rows provided for each class of circuits. The average
value in the summary is determined only from the successful runs, i.e. those that leaded to the
required reduction.

1% improvement 5% improvement 10% improvement
Benchmark global GS1 GS2 global GS1 GS2 global GS1 GS2

ac97 ctrl 4.8× 108 9.6× 108 1.2× 108 – – – – – –
aes core 2.1× 108 2.1× 109 6.8× 108 1.6× 109 > 1010 8.8× 109 – – –
des area 5.3× 107 9.7× 108 3.9× 108 > 1010 7× 109 8.6× 109 – – –
des perf > 1010 3.4× 109 1× 109 > 1010 > 1010 7.6× 109 – – –
dsp > 1010 8× 108 4.6× 108 – – – – – –
ethernet > 1010 > 1010 2.4× 109 – – – – – –
i2c 3× 105 6.7× 107 2.5× 106 8.6× 106 6.8× 108 2.9× 107 2.9× 109 > 1010 1.6× 108

mem ctrl 1.4× 104 2.6× 108 1.5× 108 8.1× 104 4.5× 109 1.6× 109 2.4× 105 > 1010 6.4× 109

pci bridge32 1.4× 109 3.1× 108 2.3× 108 – – – – – –
pci spoci ctrl 1.2× 104 3× 107 2.5× 106 1.7× 105 2.3× 108 1.7× 107 7.3× 105 6.4× 108 4.9× 107

sasc 2.2× 107 2.7× 107 1.8× 107 > 1010 8.6× 108 1.7× 109 – – –
simple spi 6.6× 106 3.9× 107 1.1× 107 > 1010 2.8× 109 7.6× 108 – – –
spi 5.5× 106 1× 108 5× 107 7.3× 107 3.9× 109 9.4× 108 2.1× 108 > 1010 > 1010

ss pcm 9.3× 106 1.1× 108 2.2× 107 > 1010 2.1× 109 6.6× 109 – – –
systemcaes > 1010 2.1× 108 1.1× 108 > 1010 1.7× 109 1.1× 109 > 1010 6.5× 109 3.5× 109

systemcdes 5.8× 106 2.4× 108 4.2× 107 5.9× 107 > 1010 4.5× 108 1.7× 109 > 1010 1.8× 109

tv80 4.2× 104 2.3× 108 8.9× 107 1.9× 107 4.8× 109 6.4× 108 2.2× 108 > 1010 2.8× 109

usb funct 9.7× 107 3× 108 7.5× 107 > 1010 6.6× 109 8.4× 108 > 1010 > 1010 5.1× 109

usb phy 6.2× 104 4.3× 106 1.5× 106 2.2× 106 5.6× 107 4× 106 6.3× 108 3.8× 108 3.8× 107

average 5.4× 106 2.2× 108 8.7× 107 7.5× 106 1.7× 109 7.4× 108 2.1× 108 6.3× 108 1.6× 109

success rate 78% 94% 100% 53% 80% 100% 77% 33% 88%
diffeq1 > 1010 2.2× 108 6.2× 107 > 1010 1.7× 109 3.4× 108 > 1010 6.8× 109 8.1× 108

div16 > 1010 8.5× 107 1.9× 107 > 1010 6.3× 108 9.3× 107 > 1010 2.6× 109 2.3× 108

hamming 3.6× 104 1.9× 107 5× 106 4× 105 1.8× 108 2.5× 107 1.5× 106 6.1× 108 4.8× 107

mac32 > 1010 6.7× 107 7.2× 107 > 1010 7× 108 8.5× 108 > 1010 > 1010 7.2× 109

max > 1010 1.1× 108 1× 108 > 1010 1.2× 109 6.2× 109 – – –
mul32 > 1010 7.7× 107 2.3× 107 > 1010 4.9× 108 1.4× 108 > 1010 1.6× 109 5.6× 108

mult64 > 1010 3.7× 108 1.2× 108 > 1010 6.8× 109 1.4× 109 – – –
revx > 1010 1× 108 2.3× 107 > 1010 8.6× 108 1.4× 108 > 1010 3.3× 109 3.8× 108

sqrt32 3.4× 105 2.5× 107 5× 106 3.8× 106 1.4× 108 3× 107 > 1010 4.8× 108 9.1× 107

average 4.9× 104 8.4× 107 2.5× 107 4.3× 105 6.9× 108 1.4× 108 1.5× 106 1.7× 109 3.8× 108

success rate 22% 100% 100% 22% 100% 100% 14% 85% 100%

well especially for small instances that are compact (do not contain many inde-
pendent sub-circuits) and that have a reasonable depth (10 to 25 levels). On the
other hand, the optimization of circuits having a large depth, many gates or many
independent sub-parts performs unsatisfactory when the global method is applied.

All the evolutionary approaches were able to improve the original circuit sub-
stantially. A significant improvement was recorded for the arithmetic circuits. The
number of gates was reduced by 27.4% using GS2 (15.3% for GS1) on the average.
The highest improvement, 59.9%, was recorded for the ‘hamming‘ benchmark.
The detailed analysis revealed that this was possible due to better handling of
XORs/XNORs compared to the conventional synthesis. The relative number of
AND/OR/NAND/NOR gates remained nearly the same (around 74%) but the
absolute number of XORs/XNORs increased from 10% to 15% for GS1 and 18%
for GS2.

EA-based Resynthesis: An Efficient Tool for Optimization of Digital Circuits 21

A more detailed analysis is provided in Table 4 showing the computational
effort required to reduce the benchmark circuits by 1%, 5% and 10%. The com-
putation effort is expressed as the average number of generations that have to be
evaluated to obtain a circuit whose number of gates is reduced by a given level. The
number of evaluations corresponds with the real number of evaluated candidate
solutions. It means that we reflected the fact that the CGP may be prematurely
terminated due to the time limit. The empty cells in the table mean that none of
the evolutionary runs produced a circuit satisfying the required condition. This
can happen either because it is in principle impossible to obtain such a circuit
(we are already at the optimum or close to the optimum) or because of the insuf-
ficient number of evaluations (nevals) or iterations (niters). The cells containing
the value > 1010 indicate that it was impossible to reduce the number of gates
to the required level within the allowed number of evaluations but it may happen
that the required reduction can be achieved when more than 1010 evaluations are
used.

If we compare the computation effort required for reduction by 1% shown in
the first section of Table 4, we can easily identify that the global method converges
faster compared to GS1 and GS2. On the other hand, the globally applied CGP
has tendency to stuck at a local optima especially when complex benchmarks are
optimized. The global method applied to the controllers and logic benchmarks was
successful in 78% cases. In the remaining cases, no result was obtained within the
allowed number of evaluations. A complete different situation can be observed for
the arithmetic circuits. Nearly none improvement was achieved in this category of
circuits. The benchmark circuits ‘hamming’ and ‘sqrt32’ represent the only excep-
tion where the evolution ended successfully. The proposed GS1 and GS2 exhibit
a slow convergence but the iterative principle makes them more robust and less
likely to converge prematurely to local optima. If we compare the success rate,
it is evident that the EA-based resynthesis exhibits better overall performance.
Method GS2 achieved the required reduction in all cases. Method GS1 performs
similarly. The only failure is in the case of ‘ethernet‘ benchmark circuit. Consider-
ing the computation effort, the proposed GS2 typically requires lower number of
generations than GS1. The superiority of GS2 over GS1 is more evident in the last
section of Table 4 showing the computation effort required for reduction by 10%.
GS1 significantly outperforms the other methods on logic as well as arithmetic
circuits.

The performance of the evolutionary methods can also be investigated by
comparing the corresponding convergence curves. Figure 6 shows the exemplary
convergence curves. The first row illustrates the situation typical for the ma-
jority of the benchmarks. It corresponds with the situation when the proposed
method GS2 clearly outperforms the remaining two methods; it converges faster
and achieves better reduction. Global method exhibits a quick convergence but the
search mostly ends at a local optima. This is the case of ‘usb phy’. For arithmetic
circuits, no improvement was achieved due to the complex circuit structure. The
second row illustrates what usually happened for instances where GS1 provided
better results than GS2. We identified two different causes. Optimization based
on Algoritm GS1 performs better because it profits from the usage of smaller sub-
circuits. The smaller sub-circuits require less computational effort to be optimized
compared to the larger ones. Such a behavior was observed for ‘max‘, ‘des area‘,
‘dsp‘, ‘ss pcm‘ and ‘max‘ benchmark. A different situation happened in case of

22 Jitka Kocnova, Zdenek Vasicek

0.0 0.2 0.4 0.6 0.8 1.0
Number of evaluations [×1010]

370

380

390

400

410

420

430

440

450
Nu

m
be

r o
f g

at
es usb_phy

0.0 0.2 0.4 0.6 0.8 1.0
Number of evaluations [×1010]

6500

6750

7000

7250

7500

7750

8000

8250

Nu
m

be
r o

f g
at

es mul32

0.0 0.2 0.4 0.6 0.8 1.0
Number of evaluations [×1010]

3450

3500

3550

3600

3650

3700

Nu
m

be
r o

f g
at

es max

0.0 0.2 0.4 0.6 0.8 1.0
Number of evaluations [×1010]

1150

1200

1250

1300

1350

1400

1450
Nu

m
be

r o
f g

at
es sqrt32

0.0 0.2 0.4 0.6 0.8 1.0
Number of evaluations [×1010]

3000

3200

3400

3600

3800

Nu
m

be
r o

f g
at

es spi

0.0 0.2 0.4 0.6 0.8 1.0
Number of evaluations [×1010]

950

1000

1050

1100

1150

Nu
m

be
r o

f g
at

es i2c

global GS1 GS2

Fig. 6 The exemplary convergence curves representing the typical progress of the fitness
score observed during the evolutionary optimization of digital circuits. Records from three
independent evolutionary runs are shown in each figure. The lower number of gates, the better
result. The data are downsampled to improve the readability. Each curve consists of up to 50
points.

‘sqrt32‘ benchmark. We suppose that GS2 modified the original circuit in such
a way that it was hard to further improve it. Considering the space of all valid
circuit structures, the method probably reached a local optima that is hard to
overcome. The last row in Figure 6 shows two examples where the global method
achieved better results than at least single proposed method. The left part shows
the typical progress observed in the case of the ‘spi‘, ‘aes core‘, ‘mem ctrl‘, and

EA-based Resynthesis: An Efficient Tool for Optimization of Digital Circuits 23

Table 5 The average number of inputs, outputs and size of the sub-circuits produced by the
implemented windowing algorithms. The numbers are reported separately for sub-circuits that
were successfully optimized (column ‘improved sub-circuits‘) and the remaining ones where
the CGP was not successful (column ‘unchanges sub-circuits‘). The median is reported for all
columns entitled ‘avg’ prefix.

improved sub-circuits unchanged sub-circuits

avg PIs avg POs avg |W | max |W | avg PIs avg POs avg |W | max |W |
Benchmark GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2

ac97 ctrl 6 48 6 60 11 100 63 100 5 54 7 67 9 100 62 100
aes core 6 53 8 98 12 100 185 100 6 55 12 97 14 100 271 100
des area 13 80 16 99 27 100 282 100 14 89 15 104 29 100 351 100
des perf 10 39 11 84 19 100 90 100 13 40 14 85 22 100 88 100
dsp 17 74 16 87 32 100 282 100 18 74 17 90 29 100 496 100
ethernet 20 60 24 89 29 100 114 100 19 63 23 95 27 100 429 100
i2c 9 40 9 69 14 100 61 100 7 40 8 58 10 100 58 100
mem ctrl 20 83 17 97 35 100 280 100 15 83 15 90 24 100 366 100
pci bridge32 11 61 11 82 19 100 274 100 11 63 12 80 18 100 287 100
pci spoci ctrl 19 58 19 88 31 100 92 100 18 58 16 89 24 100 100 100
sasc 4 26 5 30 8 90 27 100 5 30 6 32 7 100 27 100
simple spi 7 47 7 61 12 100 41 100 6 52 6 59 7 100 57 100
spi 14 68 15 87 27 100 161 100 10 70 11 85 19 100 175 100
ss pcm 5 17 4 17 7 41 24 100 6 22 5 23 7 52 26 100
systemcaes 11 76 11 78 18 100 154 100 9 67 10 78 15 100 156 100
systemcdes 20 66 20 96 38 100 122 100 17 66 18 92 31 100 139 100
tv80 15 73 21 98 33 100 244 100 15 79 18 96 26 100 239 100
usb funct 9 52 9 77 14 100 156 100 9 64 9 75 15 100 206 100
usb phy 7 17 6 28 11 63 33 100 6 25 6 44 8 89 32 100
diffeq1 26 64 25 98 51 100 268 100 26 67 24 99 47 100 302 100
div16 25 51 23 100 42 100 181 100 26 69 23 100 40 100 207 100
hamming 24 60 22 95 40 100 216 100 26 60 22 93 39 100 255 100
mac32 14 64 16 102 29 100 487 100 15 70 18 109 31 100 679 100
max 13 71 8 72 20 100 208 100 16 74 8 72 23 100 209 100
mul32 17 63 16 91 36 100 435 100 17 63 15 91 31 100 422 100
mult64 31 71 23 94 52 100 264 100 14 74 18 93 33 100 402 100
revx 33 73 29 109 55 100 227 100 33 77 29 112 52 100 257 100
sqrt32 23 70 19 96 41 100 136 100 26 66 22 99 45 100 167 100

‘tv80‘. The common feature is the steep convergence of the global method. The
chosen ‘spi‘ benchmark represents, however, a bit exceptional case because we can
observe how the global method can stuck at a local optima. As evident also from
Table 3, there is a huge difference between the best and the average result. This
is caused by the fact that only one run ended in the global optima (less than 2900
gates). We assume that the remaining four runs followed a bad direction in the
search space and stuck at a local optima (see the divergence around 3400 gates).
The right part of the last row shows the convergence curves that were observed for
the following benchmarks: i2c, pci spoci ctrl, systemcdes. In this case the global
method provided results that are better than those obtained by GS1 but worse
than those obtained by GS2.

As we already mentioned in the previous part, the evolutionary resynthesis
converges sometimes slowly compared to the CGP working at the global level.
We assume that the slow convergence is caused by the fact that each sub-circuit
produced by the proposed windowing algorithm is optimized for a fixed number

24 Jitka Kocnova, Zdenek Vasicek

0-1
99

9

20
00

-39
99

40
00

-59
99

60
00

-79
99

80
00

-99
99

10
00

0-1
19

99

12
00

0-1
39

99

14
00

0-1
59

99

16
00

0-1
79

99

18
00

0-1
99

99

Iteration

0

20

40

60

80

100

120

Si
ze

 o
f W

systemcdes

0-1
99

9

20
00

-39
99

40
00

-59
99

60
00

-79
99

80
00

-99
99

10
00

0-1
19

99

12
00

0-1
39

99

14
00

0-1
59

99

16
00

0-1
79

99

18
00

0-1
99

99

Iteration

0

25

50

75

100

125

150

175

Si
ze

 o
f W

max

0-1
99

9

20
00

-39
99

40
00

-59
99

60
00

-79
99

80
00

-99
99

10
00

0-1
19

99

12
00

0-1
39

99

14
00

0-1
59

99

16
00

0-1
79

99

18
00

0-1
99

99

Iteration

0

25

50

75

100

125

150

175

200

Si
ze

 o
f W

usb_funct

0-1
99

9

20
00

-39
99

40
00

-59
99

60
00

-79
99

80
00

-99
99

10
00

0-1
19

99

12
00

0-1
39

99

14
00

0-1
59

99

16
00

0-1
79

99

18
00

0-1
99

99

Iteration

0

50

100

150

200

250

300

Si
ze

 o
f W

diffeq1

GS1 (improved W) GS1 (unchanged W) GS2 (improved W) GS2 (unchanged W)

Fig. 7 Size of the sub-circuits extracted from the benchmark circuits in course of the opti-
mization. Data from a single evolutionary run are plotted for each benchmark circuits. The
boxes visualize distribution of |W | for sub-circuits generated in 2000 consecutive iterations.
Outliers are plotted as individual points (+ for successfully optimized sub-circuits, × for the
sub-circuits that left unchanged). Note that the boxes are reduced to a single line and outliers
in case of GS2.

of generations independently on its parameters such as the size or the number of
PIs. This simplifies the problem but it may lead to a potential inefficiency. Many
generations can be wasted to optimize small circuits. In order to elaborate on this
problem, we logged all created sub-circuits (W in Algorithm 1) and analyzed their
size and other parameters. The parameters of the sub-circuits produced by the
proposed sub-circuit extraction algorithms are given in Table 5. The table contains
the average number of inputs and outputs, and the average as well as the maximum
size of the sub-circuits produced by the proposed windowing algorithms. Note
that the leave nodes are not considered in the size. These numbers are provided
separately for the case when |W ′| < |W | (CGP reduced the sub-circuit) and for
the case when |W ′| = |W | (CGP kept the sub-circuit unchanged considering the
number of gates). Method GS2 mostly produces windows having their size equal
to wmax. Depending on the circuits structure, however, it may be impossible to
create such a large working window because there may be independent parts that
consist of the smaller number of gates. This was observed massively during the
optimization of the following three benchmark circuits: ‘sasc‘, ‘ss pcm‘, ‘usb phy‘.

EA-based Resynthesis: An Efficient Tool for Optimization of Digital Circuits 25

According to Table 5, windows having less than 100 nodes were generated in
more than half of the total number of iterations for those cases (please refer to
the column ‘avg |W |‘). This does not mean, however, that this situation did not
occurred for the remaining benchmarks. Figure 7 shows boxplots of |W | for four
selected evolutionary runs. The smaller windows, represented by the outliers in
the boxplots, were generated in many cases also for ‘usb funct‘.

Surprisingly, even GS1 produces sub-circuits of a reasonable volume despite of
the usage of the cut-based method with a simple root node selection strategy. On
the average, the size of the windows is much smaller than the chosen limit cmax.
We can also observe that many windows consisting of less than 10 gates were
generated. This is valid for ‘ac97 ctrl‘, ‘sasc‘, ‘ss pcm‘ and ‘usb phy‘. Much larger
windows are generated for the arithmetic circuits than for the controllers and logic,
on average. On the other hand, we can also see that the cut-based method is able
to extract sub-circuits having significantly more than 100 gates but we never hit
cmax. The number of inputs and outputs positively correlates with the size of W .
The larger the number of gates in the window, the higher number of inputs and
outputs. This observation is valid for both methods.

The number of inputs of the sub-circuits optimized by the evolution is sub-
stantially higher compared to the numbers used by the rewriting algorithm which
is applied in the conventional synthesis. Compared to the rewriting and other
techniques mentioned in Section 2.2, a relatively complex portions of the original
circuits are chosen for subsequent optimization. This could explain the reason,
why the proposed EA-based method is able to achieve such reduction compared
to the conventional state-of-the-art synthesis.

6 Conclusion

Compared to the conventional logic synthesis, state-of-the-art EA-based optimiza-
tion is able to produce substantially better results but at the cost of a higher run
time. Unfortunately, the run time increases with the increasing complexity of the
Boolean networks. This work addressed this problem by combining the EA-based
optimization with the principle of the so called Boolean network scoping. Our
method extracts smaller sub-circuits from a complex circuit that are optimized
locally and implanted back to the original circuit. This concept can be understood
as the evolutionary resynthesis. This approach helps to improve the scalability be-
cause the evolution is applied on smaller portions of the original Boolean network.

We implemented and evaluated two different techniques to the sub-circuit ex-
traction. One method is based on the computation of the so called reconvergence-
driven cuts. This approach is used in the state-of-the-art logic synthesis algorithms
but in a different scenario. Despite of many advantageous properties, the cut-based
method has some limitations regarding our application. To avoid that, we proposed
an alternative approach loosely inspired by a conventional windowing technique.

Even though we used a simple setting which may degrade the capabilities of
the resynthesis (e.g. the fixed number of evaluations of EA or random root node
selection), the proposed approach was able to outperform the EA-based optimiza-
tion applied to the whole Boolean networks. The proposed sub-circuit extraction
inspired by windowing exhibit significantly better compared to the cut-based al-
ternative. On the average, the evolutionary resynthesis achieved 8.9% circuit size

26 Jitka Kocnova, Zdenek Vasicek

improvement on controllers and 21.4% improvement on arithmetic circuits. The
globally applied evolution was able to improve the circuits belonging to the men-
tioned groups by 7.5% and 1.8%, respectively. Even though only the area was
targeted in this study, the depth of the optimized circuits is comparable with the
original circuits.

The capability of exploration of the evolutionary resynthesis is higher but at
the cost of slower convergence. There are few instances where the EA-based opti-
mization applied to the whole circuit produced better results. In our future work,
we would like to implement an adaptive strategy that modifies the maximum num-
ber of evaluations according to the size of the optimized logic circuit. We suppose
that this mechanism helps us to improve the convergence. In addition to that, we
would like to focus on improvement of root node selection strategy. The question
here is whether the result would be better if the cut is built from a node near to
the previously chosen one.

References

1. Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification tool. In:
Computer Aided Verification, pp. 24–40. Springer Berlin Heidelberg, Berlin, Heidelberg
(2010)

2. Coello, C.C.A., Christiansen, A.D., Aguirre, A.H.: Automated design of combinational
logic circuits by genetic algorithms. In: Artificial Neural Nets and Genetic Algorithms:
Proceedings of the International Conference in Norwich, U.K., 1997, pp. 333–336. Springer
Vienna, Vienna (1998). DOI 10.1007/978-3-7091-6492-1 73

3. Fiser, P., Schmidt, J.: Small but nasty logic synthesis examples. In: Proc. 8th Int. Work-
shop on Boolean Problems, pp. 183–190 (2008)

4. Fiser, P., Schmidt, J., Vasicek, Z., Sekanina, L.: On logic synthesis of conventionally hard
to synthesize circuits using genetic programming. In: 13th IEEE Symposium on Design
and Diagnostics of Electronic Circuits and Systems, pp. 346–351 (2010)

5. Goldman, B., Punch, W.: Reducing wasted evaluations in cartesian genetic programming.
Lecture Notes in Computer Science 7831 LNCS, 61–72 (2013). DOI 10.1007/978-3-642-
37207-0 6

6. Goldman, B.W., Punch, W.F.: Analysis of cartesian genetic programming’s evolutionary
mechanisms. IEEE Transactions on Evolutionary Computation 19(3), 359–373 (2015)

7. Gordon, T.G.W., Bentley, P.J.: On evolvable hardware. In: Soft Computing in Industrial
Electronics, pp. 279–323. Physica-Verlag, London, UK (2002)

8. Haddow, P.C., Tyrrell, A.: Challenges of evolvable hardware: past, present and the path
to a promising future. Genetic Programming and Evolvable Machines 12, 183–215 (2011)

9. Higuchi, T., Niwa, T., Tanaka, T., Iba, H., de Garis, H., Furuya, T.: Evolving Hardware
with Genetic Learning: A First Step Towards Building a Darwin Machine. In: Proc. of the
2nd International Conference on Simulated Adaptive Behaviour, pp. 417–424. MIT Press
(1993)

10. Kocnova, J., Vasicek, Z.: Towards a scalable ea-based optimization of digital circuits.
In: Genetic Programming 22nd European Conference, EuroGP 2019, pp. 81–97. Springer
International Publishing (2019). DOI 10.1007/978-3-030-16670-0 6

11. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Nat-
ural Selection. MIT Press, Cambridge, MA (1992)

12. Li, N., Dubrova, E.: AIG rewriting using 5-input cuts. In: Proc. of the 29th Int. Conf. on
Computer Design, pp. 429–430. IEEE CS (2011)

13. Miller, J., Thomson, P.: Cartesian Genetic Programming. In: Proc. of the 3rd European
Conference on Genetic Programming EuroGP2000, LNCS, vol. 1802, pp. 121–132. Springer
(2000)

14. Miller, J.F.: Digital filter design at gate-level using evolutionary algorithms. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, GECCO 1999, pp.
1127–1134. Morgan Kaufmann (1999)

15. Miller, J.F.: Cartesian Genetic Programming. Springer-Verlag (2011)

EA-based Resynthesis: An Efficient Tool for Optimization of Digital Circuits 27

16. Miller, J.F.: Cartesian genetic programming: its status and future. Genetic Programming
and Evolvable Machines (2019). DOI 10.1007/s10710-019-09360-6

17. Miller, J.F., Thomson, P., Fogarty, T.: Designing electronic circuits using evolutionary al-
gorithms. arithmetic circuits: A case study. In: Genetic Algorithms and Evolution Strate-
gies in Engineering and Computer Science, pp. 105–131. Wiley (1997)

18. Mishchenko, A., Brayton, R.: Scalable logic synthesis using a simple circuit structure. In:
Int. Workshop on Logic and Synthesis, pp. 15–22 (2006)

19. Mishchenko, A., Chatterjee, S., Brayton, R.: DAG-aware AIG rewriting: a fresh look at
combinational logic synthesis. In: 2006 43rd ACM/IEEE Design Automation Conference,
pp. 532–535 (2006). DOI 10.1145/1146909.1147048

20. Sekanina, L.: Evolvable Components: From Theory to Hardware Implementations. Natural
Computing Series, Springer Verlag (2004)

21. Sekanina, L., Ptak, O., Vasicek, Z.: Cartesian genetic programming as local optimizer of
logic networks. In: 2014 IEEE Congress on Evolutionary Computation, pp. 2901–2908.
IEEE CIS (2014)

22. Shanthi, A.P., Parthasarathi, R.: Practical and scalable evolution of digital circuits. Ap-
plied Soft Computing 9(2), 618–624 (2009)

23. Stomeo, E., Kalganova, T., Lambert, C.: Generalized disjunction decomposition for evolv-
able hardware. IEEE Transaction Systems, Man and Cybernetics, Part B 36(5), 1024–1043
(2006)

24. Stomeo, E., Kalganova, T., Lambert, C.: Generalized disjunction decomposition for the
evolution of programmable logic array structures. In: First NASA/ESA Conference on
Adaptive Hardware and Systems (AHS’06), pp. 179–185 (2006)

25. Tao, Y., Zhang, L., Zhang, Y.: A projection-based decomposition for the scalability of
evolvable hardware. Soft Computing 20(6), 2205–2218 (2016). DOI 10.1007/s00500-015-
1636-2

26. Thompson, A.: Silicon evolution. In: Proceedings of the First Annual Conference on
Genetic Programming, GECCO ’96, pp. 444–452. MIT Press, Cambridge, MA, USA (1996)

27. Vasicek, Z.: Cartesian GP in optimization of combinational circuits with hundreds of
inputs and thousands of gates. In: Proceedings of the 18th European Conference on Ge-
netic Programming – EuroGP, LCNS 9025, pp. 139–150. Springer International Publishing
(2015)

28. Vasicek, Z., Sekanina, L.: Formal verification of candidate solutions for post-synthesis
evolutionary optimization in evolvable hardware. Genetic Programming and Evolvable
Machines 12(3), 305–327 (2011)

29. Vassilev, V., Job, D., Miller, J.F.: Towards the Automatic Design of More Efficient Digital
Circuits. In: J. Lohn, A. Stoica, D. Keymeulen, S. Colombano (eds.) Proc. of the 2nd
NASA/DoD Workshop on Evolvable Hardware, pp. 151–160. IEEE Computer Society,
Los Alamitos, CA, USA (2000)

30. Wolf, C., Glaser, J., Kepler, J.: Yosys-a free verilog synthesis suite. In: Proceedings of the
21st Austrian Workshop on Microelectronics (Austrochip) (2013)

31. Zhao, S., Jiao, L.: Multi-objective evolutionary design and knowledge discovery of logic
circuits based on an adaptive genetic algorithm. Genetic Programming and Evolvable
Machines 7(3), 195–210 (2006)

Appendix D

Resynthesis of logic circuits using
machine learning and reconvergent
paths

KOCNOVA Jitka and VASICEK Zdenek
In: 24th Euromicro Conference on Digital System Design (DSD). Palermo, Italy, 2021, pp.
69-76, doi: 10.1109/DSD53832.2021.00020.

91

Resynthesis of logic circuits using machine learning
and reconvergent paths

Jitka Kocnova
Brno University of Technology,

Faculty of Information Technology,
IT4Innovations Centre of Excellence

Brno, Czech Republic
ikocnova@fit.vutbr.cz

Zdenek Vasicek
Brno University of Technology,

Faculty of Information Technology,
IT4Innovations Centre of Excellence

Brno, Czech Republic
vasicek@fit.vutbr.cz

Abstract—Boolean network scoping represents a common ap-
proach incorporated in conventional synthesis tools for main-
taining good scalability of the synthesis process. Recently, an
approach to the local resynthesis based on combination of
evolutionary optimization with the principle of Boolean network
scoping has been proposed. Local resynthesis is an iterative
process based on the extraction of smaller sub-circuits from a
complex circuit that are optimized locally and implanted back to
the original circuit. The main advantage of the local resynthesis
is that it can mitigate the problem of scalability of representation
which is typical to the evolutionary algorithms as the efficiency
of the evolutionary optimization applied at the global level
deteriorates with the increasing circuit complexity. Unfortunately,
the efficiency of local resynthesis depends on the efficiency of
the sub-circuit extraction process. We propose an alternative
method, based on the reconvergent paths. The evaluation is
performed on a set of highly optimized benchmark problems
representing various real-world controllers, logic and arithmetic
circuits. The method provides better results compared to the
state-of-the-art logic synthesis tool and evolutionary optimization
techniques operating locally and globally. A substantially higher
number of redundant gates was removed in more than 70%
cases, while keeping the computational effort at the same level.
A huge improvement was achieved especially for the controllers.
On average, the proposed method was able to remove more than
14.3% of gates. The highest achieved gate reduction was more
than 45% of gates.

Index Terms—Logic optimization, Cartesian Genetic Program-
ming, Evolutionary Resynthesis

I. INTRODUCTION

Logic synthesis transforms a high-level description into
a gate-level or transistor-level implementation. Due to the
complexity of the current digital systems, the synthesis pro-
cess is typically broken into a sequence of steps. Among
others, logic optimization represents an important part of
the whole process. The goal of the logic optimization is to
transform a suboptimal solution into an optimal gate-level
implementation with respect to given synthesis goals. The
problem is typically represented using a suitable internal
representation due to the scalability issues. Current state-of-
the-art logic synthesis tools, such as ABC, represent circuits
using a directed acyclic graph composed of two-input AND
nodes connected by direct or negated edges denoted as and-
inverter graph (AIG). The AIG representation is simple and

scalable, and leads to simple algorithms but it suffers from
an inherent bias in representation. While eight of ten possible
two-input logic gates may be represented by a single AIG
node, XOR and XNOR gates require three AIG nodes each.
The efficiency of synthesis is then limited as it mostly fully
relies on transformations that disallow an increase in the
number of AIG nodes. However, the ability to capture XOR
gates is essential for efficient representation of arithmetic and
XOR-intensive circuits. It has been shown that there exists
a huge class of real-world circuits for which the synthesis
fails and provides very poor results [1, 2, 3]. In some cases,
the area of the synthesized circuits is orders of magnitude
higher than the known optimum. If a large design is broken
down to multiple smaller circuits and such a failure occurs
during resynthesis, we obtain an unacceptably large circuit. To
address this problem, various approaches have been proposed.
E.g. binary decision diagrams (BDDs) can be employed [4, 5].
Due to their limited scalability, Amaru et al. employed a
two step synthesis process based on a selective and distinct
manipulation of AND/OR and XOR-intensive portions of the
logic circuit [6]. In the first phase, XOR-intensive regions
are identified in the input Boolean network. These regions
are then optimized in the second phase independently of the
rest of the network. On average, the method outperforms the
AIG-based ABC by 18% when the number of transistors is
considered. Fiser et al. introduced XOR-AIGs to explicitly
support XOR gates [7]. The synthesis is based on a modified
rewriting selecting subgraphs with four leaves. Unfortunately,
no significant improvement has been reported in the paper.
Haaswijk et al. adopted a different approach [8]. Instead of
AIG, XOR majority graphs (XMGs) have been employed
to extend the capabilities of the synthesis oriented on area
optimization. To summary, the conventional methods rely on
circuit preprocessing or circuit decomposition [6], precom-
putation of optimal solutions [7] or presence of advanced
technology cells such as XMG [8].

A different strategy is to avoid intermediate representation.
Various machine-learning approaches working directly at the
level of gates were successfully applied to address this prob-
lem [1, 9]. In [9], for example, Vasicek demonstrated that the
evolutionary synthesis using Cartesian Genetic Programming

(CGP) conducted directly at the level of common gates is
able to provide significantly better results compared to the
state-of-the-art synthesis operating on AIGs. On average, the
method enabled a 34% reduction in gate count on an extensive
set of benchmark circuits when executed for 15 minutes.
A similar approach was successfully applied even to the
synthesis of conventionally hard to synthesize circuits [2]. It
was observed, however, that the efficiency of the evolutionary
approach deteriorates with the increasing circuit complexity,
i.e. the increasing number of gates. Motivated by this fact, a
combination of evolutionary optimization with the principle of
so-called Boolean network scoping has been proposed in [10,
11]. Boolean network scoping represents a common approach
incorporated in conventional synthesis tools for maintaining
the good scalability of the synthesis process. The key idea is to
use an iterative procedure which extracts sub-circuits that are
subsequently optimized by Cartesian Genetic Programming
and implanted back into the original circuit provided that
there is an improvement at the global level. This approach
can be understood as the EA-based resynthesis. As it has been
demonstrated in [11], the size of the sub-circuits has an impact
on the scalability of the CGP and also on the efficiency of the
whole optimization process. Small sub-circuits ensure a good
scalability of the evolutionary optimization, but they lead to
minor improvements at the global level because this method
operates mainly locally similarly to the conventional rewriting.
Large sub-circuits, on the other hand, increase a chance for
improvement but the performance of the CGP deteriorates with
increasing the size of the optimized circuit. In order to obtain a
reasonable optimization method, it is necessary to find a good
trade-off between the mentioned two extremes. Two methods
of Boolean network scoping were proposed in the literature.
The first was inspired by the conventional method based on
computing so-called k-feasible cuts [10]. The other one was
based on a so-called windowing method [11]. Both methods
achieved significant reduction w.r.t. the number of gates in
the benchmark circuits but the sub-circuit selection introduces
some overhead. This overhead is noticeable especially if many
sub-circuits that lack any form of redundancy are selected. In
this case, the evolutionary optimization will spend a significant
amount of time by trying to search for a better solution that
simply does not exist.

Our goal is to improve the performance of the sub-circuit
selection – mainly to focus on particular areas in the circuits
that may potentially boost the efficiency of the evolutionary
optimization. In order to achieve this goal, we propose to
optimize sub-circuits containing so-called reconvergent paths.

II. BACKGROUND

This section presents relevant background on conventional
as well as EA-based optimization of logic circuits and intro-
duces the notation used in the rest of the paper.

A. Boolean networks

Every circuit can be represented using a Boolean network.
A Boolean network is a directed acyclic graph (DAG) with

nodes represented by Boolean functions [12]. The sources of
the graph are the primary inputs (PIs) of the network and the
sinks are the primary outputs (POs). The output of a node
may be an input to other nodes called fanouts. The inputs of
a node are called fanins. An edge connects two nodes that
are in fanin/fanout relationship. Considering this notion, And-
Inverter Graph is a Boolean network composed of two-input
ANDs and inverters. The network primary inputs are signals
that are driven by the environment, there is no node driving
these signals in the network. Similarly, the primary outputs
are signals that drive the environment and are needed by inner
network nodes as well. The size of the network is the number
of the nodes (primary inputs and outputs are not considered).

B. Limiting the scope of Boolean networks

Network scoping represents a key operation to ensure a good
scalability of synthesis tools when working with large Boolean
networks. It forms an integral part of rewriting as well as
refactoring. Two approaches have been proposed to limit the
scope of logic synthesis to work only on a small portion of a
Boolean network – windowing and cut computation [11, 12].

The windowing algorithm determines the working area
denoted as window by computing transitive fanin and transitive
fanout. The algorithm takes a node (typically referred to as
pivot node) and two integers m and n defining the number
of logic levels on the fanin/fanout sides of the node to be
included in the resulting window. The transitive fanin is a set
of nodes on the fanin side that are distance-m or less from the
pivot node. Similarly, the transitive fanout is a set of nodes
on the fanout side that are distance-n or less from the pivot
node. These two sets are then used to obtain the leaf and root
sets that uniquely determine the window. The window of a
Boolean network N is a connected subnetwork N′ ⊆ N that
corresponds to the subset of nodes of the network containing
nodes from root set together with all nodes on paths between
the leaf set and the root set. The nodes in the leaf set are not
included in the window. The complete algorithm can be found
in [11, 12]. The main problem of this algorithm is that it is
hard to predict how many logic levels have to be traversed to
get a window of the desired parameters.

The second approach based on computing so-called k-
feasible cuts is usually preferred to avoid determining the
required number of logic levels. A cut of a node, called root
node, is a set of nodes of the network, called leaves, such
that each path from PI to the root node passes through at
least one leaf. A cut is k-feasible if the number of nodes
(i.e. cut size) in the cut does not exceed k. The volume of
a cut is the total number of nodes encountered on all paths
between the root node and the cut leaves. An example of two
different 3-feasible cuts is shown in Fig. 1. The problem is that
the cut computed using a naive breadth-first-search algorithm
may include only a few nodes and leads to tree-like logic
structures. Such a structure does not lead to any don’t cares
in the local scope of the node and attempting optimization
using such a cut would be wasted time. A simple and efficient
cut computation algorithm producing a cut close to a given

(a) Cut CI = {7, 2, 3} (b) Cut CII = {1, 2, 3}
Fig. 1: Example of two possible 3-feasible cuts for root node
m and given Boolean network. The cut CII is preferred as its
volume is five (root node m and contained nodes 5, 7, 8 and
9). There are only two contained nodes (node 8 and 9) in the
case of CI.

size while heuristically maximizing the cut volume has been
introduced in [12]. The k-feasible cuts are important not only
for the gate-level logic synthesis but also for FPGA-based
synthesis as a k-feasible cut can be implemented as a k-input
LUT.

C. Evolutionary Synthesis of Logic Circuits

Evolutionary algorithms (EAs) have been used to synthesize
logic circuits since the late nineties [13, 14]. Miller et al.,
the author of Cartesian Genetic Programming (CGP) [15], is
considered a pioneer in the field of logic synthesis of gate-
level circuits. He utilized his own variant of genetic program-
ming to synthesize compact implementations of multipliers
described by means of a behavioral specification [16]. Despite
the many advantages of this unconventional technique, only
small problem instances were typically addressed. To tackle
the limited scalability, various decomposition strategies have
been proposed. A good survey of the existing techniques is
provided, for example, in [17]. In 2011, the scalability of
CGP has been significantly improved by introducing a SAT-
based CGP. It exploits the fact that the candidate solutions
must be functionally equivalent with their parent in logic
optimization in order to be further accepted. It also exploits
the knowledge of differences between parental and candidate
circuits. The efficiency of the SAT-based method was further
improved by combining a SAT solver with an adaptive high-
performance circuit simulator used to quickly identify the
potential functional non-equivalence. The most advanced SAT-
based CGP employs a simulator that is driven by counterexam-
ples produced by the SAT solver [9]. Neither the original nor
the latter approach rely on a decomposition of the optimized
circuits. Many other machine learning techniques have been
recently used for circuit synthesis, see e.g. [18].

Since its introduction, CGP remains the most powerful
evolutionary technique in the domain of logic used in the
domain of digital circuit synthesis and optimization [14]. In
this area, a linear form of CGP is preferred today. CGP models
a candidate circuit having ni PIs and no POs as a linear 1D
array of nn configurable nodes, as can be seen in the Figure 2.
Each node has na inputs and corresponds to a single gate with

up to na inputs. The inputs can be connected either to the
output of a node placed in the previous L columns or directly
to PIs to avoid feedback. The function of a node can be chosen
from a set of nf functions. Depending on the function of a
node, some of its inputs may become redundant. Also, the
fixed number of nodes nn does not mean that all the nodes
contribute to the POs. These key features allow redundancy
and flexibility of CGP.

The candidate circuits are encoded as follows. Each PI as
well as each node has associated an unique index. Each node
is encoded using na + 1 integers (x1, · · · , xna

, f) where the
first na integers denote the indices of its fanins and the last
integer determines the function of that node. Every candidate
circuit is encoded using nn(na +1)+no integers. The last no
integers specify the indices corresponding to each PO.

CGP is a population oriented approach which operates with
1 + λ candidate solutions. The initial population is seeded
by the original circuit ought to be optimized. Every new
population consists of the best circuit chosen from the previous
population and its λ offspring created using a mutation oper-
ator that randomly modifies up to h integers. Considering the
CGP encoding, a single mutation causes either reconnection of
a gate, reconnection of primary outputs or change in function
of a gate. The selection of the individuals is typically based
on a cost function (e.g. the number of active nodes). In the
case that there are more individuals with the same score, the
individual that has not served as a parent will be selected
as the new parent. This procedure is typically repeated for a
predefined number of iterations.

A

B

C
S

S

(1, 3, 3) (1, 3, 1) (2, 4, 3) (4, 2, 1) (6, 7, 0) (5, 7, 2) (6, 9)

Fig. 2: Example of a CGP individual encoding a logic circuit
(one-bit full adder) with ni = 3 inputs and no = 2 outputs.
The individual is encoded using an array of nn = 6 two-
input single-output nodes whose functions are chosen from a
set of primitive functions Γ = {NOT,AND,OR,XOR}. The
nodes are arranged in a two-dimensional grid for improved
readability. Redundant connections and nodes, (those that do
not contribute to the outputs) are highlighted by dotted line.

D. EA-based resynthesis

Let C be a combinational circuit described at the level of
common gates represented by a Boolean network N consisting
of |N | nodes. Each node corresponds to a single gate in C. The
pseudo-code of the proposed optimization procedure based
on evolutionary resynthesis presented in [11] is shown in
Algorithm 1.

An iterative process which consists of a sequence of three
steps that are executed in a loop is applied. A working area

(Boolean network W) is extracted from the Boolean network
N ′ in the first step. The goal is to obtain a smaller circuit
which is easier to manipulate with. Each W that is not suitable
for the subsequent optimization is skipped in the next step in
order to eliminate execution of a relatively time-consuming
resynthesis for the windows that are unlikely to lead to any
improvement. Identification of the suitable windows can be
based on the size of W (small windows are filtered out) or a
more advanced metric which reflect, for example, the number
of inputs and depth (thin windows are filtered out). In the
third step, resynthesis by means of the CGP is applied to the
extracted Boolean network. At the beginning, each node in
the window is assigned an unique index and a netlist corre-
sponding with the nodes in the window is created. This netlist
is then used to seed the initial population. The evolutionary
optimization is executed for a limited number of iterations.
The number of iterations should be determined heuristically.
The more iterations are allowed, the higher improvement can
be achieved. On the other hand, many iterations on a small
window wastes time. Finally, the optimized logic network W ′

is evaluated w.r.t. N ′ and if it performs better, it replaces
all non-leaf nodes included in W . The whole optimization
algorithm is terminated when a predefined number of iterations
or a given runtime is exhausted.

Algorithm 1: Optimization of digital circuits using
EA-based resynthesis

Input: A Boolean network N
Output: Optimized network N ′, cost(N ′) ≤ cost(N)

1 N ′ ← N
2 while terminated condition not satisfied do
3 W ← GetSubcircuit()
4 if W is a suitable candidate then
5 W ′ ← OptimizeNetworkUsingEA(W)
6 if cost((N ′ \W) ∪W ′) < cost(N ′) then
7 N ′ ← (N ′ \W) ∪W ′

8 return N ′

In [11], two different approaches to the extraction of W
were proposed. The first one was based on the cut computed
using a naive breadth-first-search algorithm. The problem
here was that W extracted a tree-like logic structure and
consisted of only a few nodes, mainly when working with
networks of a small depth. In order to maximize the volume
of W , another approach based on the windowing algorithm
was presented. Instead of predicting how many logic levels
were needed to traverse in order to get the W of a desired
volume, the W was cumulatively expanded with all of the
neighbouring nodes of the nodes already present in the W ,
so that W was expanded in every possible direction. This
approach successfully overcame the issues connected with the
earlier mentioned breadth-first-search-based algorithm. The W
is always extracted randomly in these two methods, without
incorporating any further knowledge about the circuit (e.g.
number of nodes, PIs, POs, depth, atc.). The optimization step
itself may then lead to an inefficiency when trying to optimize
a W , that can not be optimized any more or, when the W does

not include sufficient interconnection between its nodes. As
shown in [11], the main progress in optimization of a circuit
was achieved mostly in the beginning of the optimization; after
that, the node reduction seemed to be not very significant even
though the circuits still contained redundant nodes. Also, only
a part of the CGP generations computed for each sub-circuit
had an effect on reduction or at least modification of the sub-
circuit. In conclusion, many iterations of the optimization were
executed without actually making an impact on the overall
result.

III. THE PROPOSED METHOD

To overcome limitations mentioned in Section II-D, we
propose to increase the redundancy of the nodes in W . Before
selecting the W itself, we try to find a so-called reconvergence
path. Reconvergent paths lead from one source node through
two different areas of the network and meet again at the inputs
of a single node located in fanout cone of the source node.
Such a path may increase a chance of a good optimization
result, as it may contain more redundant nodes than the other
areas of the network N [12].

Algorithm 2: Procedure GetSubcircuit based on recon-
vergence paths

Input: A Boolean network N ,
minimum (rwmin) and maximum (rwmax) volume of W ,
maximum rpmax volume of reconvegent path rp
Output: A working area RW , rwmin ≤ |W |≤ rwmax

1 RW ← ∅
2 rp← ∅
3 init roots← randomly select K nodes from N
4 rp← identify a reconvergence path starting from a node

n ∈ init roots containing at least rpmax nodes
5 if rp found then
6 push all nodes from rp to RW

7 else
8 select a node n ∈ init roots randomly
9 push n to RW

10 init queue q with rp
11 while q not empty ∧ |RW |< rwmax do
12 rm← pop a node from q
13 RW ← RW ∪ {rm}
14 X ← fanin(rm) ∪ fanout(rm)
15 push all nodes from X \RW that are not already in q

into q

16 if |RW |< rwmin then
17 RW ← ∅
18 W ← ⋃

rm∈RW

fanin(rm)

19 return RW

The principle of the proposed selection strategy is given in
Algorithm 2. The input is a boolean network N and the output
is a set of nodes (selected sub-circuit) denoted as RW . At the
beginning, an attempt to identify a reconvergent path rp of
a desired volume (in terms of the number of gates along the
path) is executed. This step is repeated at most K times for
k = 10 randomly selected nodes denoted as init roots. The
first successfully identified rp proceeds to the next step of the

algorithm. All the nodes from rp are copied to RW (see line 6)
and root of rp becomes the rm node. If the reconvergent path
is not found in the given amount of tries, the RW is initiated
with a randomly chosen root node from the init roots.

If the volume of the RW is not already at its upper limit
rwmax, the RW is expanded with the nodes connected to the
nodes already present in the RW . The expansion starts from
the root node rm. If the RW contains less than rwmin nodes
at the end of the selection, it is declined from the optimization
process and search for a more suitable RW starts again. An
example of the outcome of our algorithm can be seen in the
Figure 3.

q1

L L L

R

1 2 3

5

6

8 9 10

11 12

rm

q2q3

q4

q5

q6

q7

q8

q9

q10

R R

LL 4
7

13

R

Fig. 3: Example of the window consisting of 13 nodes created
using the reconvergence path selection Algorithm 2. The re-
convergence path rp starting in the root node rm is highlighted
using the gray nodes. The nodes q5–q12 are those added during
the final expansion of the selection RW . The nodes at the
bottom are primary inputs. The root and leaves of the window
are denoted as R and L, respectively. The nodes in the window
have assigned an index (the number located below a particular
node) used to uniquely identify each node in the CGP. The
labels qi inside the nodes denote the order i in which the
nodes were chosen.

IV. EXPERIMENTAL EVALUATION

A. Experimental setup

The proposed method was implemented in C++ as a part of
Yosys open synthesis suite [19]. This tool allows us to directly
manipulate with Verilog files and it integrates ABC [20],
a state-of-the-art academic tool for hardware synthesis and
verification. The reconvergence path selection was done with
the help of the Mockturtle C++ logic network library [21]. The
goal of this paper is to evaluate performance of the proposed
method (further denoted as GSRW) and compare the results to
those presented in [11], i.e. to the method using the windowing
algorithm for the sub-circuit extraction (denoted as GSW),
and also the EA-based method (denoted as global) applied
to the whole Boolean network. In addition to that, the results
from ABC are included to establish a baseline. Each of the
three evolutionary methods operate at the level of optimized
and mapped Boolean networks to avoid the bias of AIG
representation. To provide a fair evaluation, we used the same

set of benchmark circuits as in [11]. This set includes 28 highly
optimized real-world circuits to evaluate all of the methods.
Nineteen Verilog netlists are taken from IWLS’05 Open Cores
benchmarks, the remaining nine netlists represent various
arithmetic circuits1. The circuits were optimized by ABC
(several iterations of ABC command ‘resyn’) and mapped
to gates using a library of common 2-input gates including
XORs/XNORs gates (ABC command ‘map’). After mapping,
optimization by the three observed methods was executed and
the final number of mapped gates in circuits was examined.
All of the optimized circuits were formally verified w.r.t their
original form (ABC command ‘cec’).

We target area-optimization. It means that the only cri-
terion considered in the fitness function is the area on a
chip expressed as the number of gates. The improvement is
measured in terms of the number of removed gates. The line
6 of Algorithm 1 thus reduces to |W ′|< |W | which is much
simpler to evaluate. For each method and each benchmark, five
independent runs were executed to obtain statistically valid
results. All of the optimized circuits were formally verified
with respect to their original form (ABC command ‘cec’) to
avoid any error in the evaluation.

The procedure OptimizeNetworkUsingEA is based on the
CGP implemented as described in Section II-C with the
following parameters: na = 2, λ = 1, h = 2, nn = |W |,
Γ = {BUF,NOT,AND,OR,XOR,NAND,NOR,XNOR}.
The CGP parameters were chosen in accordance with [9].
A single call of this procedure is executed for the global
method (the procedure takes the whole Boolean network and
returns its optimized version). On the contrary, several calls
of this procedure are executed both in the proposed GSRW
method and the GSW method. The global method terminates
when niters iterations are exhausted. One iteration corresponds
to evaluation of a single candidate solution. In the case of
the proposed method a simple divide-and-conquer strategy is
employed. The termination conditions are designed as follows.
The GSRW and GRW methods are allowed to execute niters
iterations. Each iteration corresponds to a single execution
of the OptimizeNetworkUsingEA procedure. This procedure
terminates either when a given number of evaluations (nevals)
is exhausted or when a predefined amount of time (tmax)
has elapsed. The latter condition helps to ensure a good
scalability and predictability of the worst-case CPU time
of the optimization which could be enormous especially in
those cases when many hard-to-solve candidate solutions are
generated during the evolution. The GSRW method is allowed
to select a reconvergent path of a rpmax volume. In [11],
the global method was terminated either when nevals×niters
evaluations were exhausted or when the CPU time reached
tmax×niters seconds. To set up all the necessary parameters
of the optimization, we used the same experimental settings as
were used in [11]. This helps to fairly evaluate all evolutionary
methods because they are allowed to evaluate the same number
of candidate solutions. To match the setup with that used

1The benchmarks can be found at https://lsi.epfl.ch/MIG

in the already available works, we chose niters = 2 × 104,
nevals = 5 × 105, and tmax = 10 seconds in this work. The
volume of the reconvergent path in the GSRW method is set to
rpmax = (10, 20, 50, 100) gates and the minimal and maximal
volume of the selection rwmin = 5, rwmax = 100 nodes
respectively. This setup ensures that 1010 candidate solutions
are generated and evaluated for every method.

B. Experimental results

The overall results showing the performance of the con-
sidered approaches are summarized in Tab. I. The first three
columns contain information about the benchmarks (name,
number of PIs and POs). The next two columns show pa-
rameters of the optimized and mapped circuits produced by
ABC; the number of gates and logic depth are given. These
numbers serve as a baseline for our comparison. Then, the
achieved improvement expressed as the relative reduction
with respect to the baseline is reported for the global and
both local methods. For each method, we report the average
improvement and also the best obtained results (section best
improvement). The statistics are based on all five independent
runs for every circuit and every method. The results presented
for the proposed GSRW method are in the form of an average
improvement obtained from the average improvements of the
five independent runs for every desired reconvergent path
volume as mentioned in IV-A. The average results for the
different reconvergent path volumes are quite similar for
each circuit (the average difference between them is 2% at
maximum). The similar reduction result is caused by the total
volume of the selected sub-circuits (rwmax = 100 nodes).
However, the presence of the reconvergent paths in the sub-
circuits had the main impact on the gate reduction process.
Hence, we decided to present an overall average of all of the
obtained results for every circuit for the GSRW.

The proposed method was able to reduce the size of every
circuit even though the circuits have already been optimized
by ABC. On average, the GSRW method achieved 13.4%
circuit size reduction on the IWLS’05 benchmarks and 14.5%
reduction on arithmetic circuits. The highest improvement,
45.9%, was recorded for the ‘hamming‘ benchmark. Although
the GSRW method is in principle stochastic (similarly to the
GSW), the best results obtained by it are relatively close to
the average ones which suggests that this evolutionary method
is quite stable. Compared to the global method, the GSRW
method performs substantially better considering the average
as well as the best results. It won in 26 out of 28 cases. The
GSW method won in 24 cases against the global method. So,
the global method comes out as a loser in this comparison,
except for the two cases (‘mem ctrl‘ and ‘spi‘). It can be
concluded, in general, that the global method works well
especially for small instances that are compact (do not contain
many independent sub-circuits) and that have a reasonable
depth (10 to 25 levels). When compared to the GSW method,
the GSRW is a winner in reducing the IWLS’05 Open Cores
benchmarks – it won in 18 out of 19 cases. However, the

GSW method achieved better results in the reduction of the
arithmetic set of benchmarks. It was better in 5 out of 9 cases.

We also investigated and compared the corresponding
convergence curves of the performance of the evolutionary
methods. Global method converges quickly but the reduction
process typically gets stuck at a local optima. Both the GSW
and the proposed GSRW method profit from the usage of
smaller sub-circuits, that require less computational effort to
be optimized compared to the whole circuits. As can be
clearly seen in the convergence graphs in Figure 4, the GSW
method reaches its solution earlier than the GSRW method.
However, the GSRW compensates for the slower convergence
with better utilization of the computation time thanks to the
suitable structure of the sub-circuits. Hence, a substantially
higher number of the total 1010 candidate solutions generated
during the optimization successfully participated in the final
circuit reduction.

Considering the arithmetic circuits, the GSRW performs
worse compared to the GSW method. In five cases (‘ham-
ming‘, ‘diffeq1‘, ‘div16‘, ‘MAC32‘, ‘revx‘), the performance
of the GSRW was surpassed by the GSW. We analysed the
convergence curves and parameters of the produced windows
to investigate this issue and we identified that the performance
is connected with the internal structure of the circuits. Figure 5
shows the numeral IDs of root nodes of the sub-circuit
identified using the GSRW method. The higher ID typically
implies a node located close to the outputs and a higher volume
of the corresponding sub-circuit. The blue boxplots represent
cases for which the desired reconvergent path was found while
the orange ones are those for which the reconvergent path
does not exist and the same window-like selection as in the
GSW was applied. It can be seen that for the ‘hamming‘
benchmark (see Figure 5c), the reconvergent path was selected
in almost every iteration of the optimization algorithm, which
is good. However, we can see that the root nodes (and thus the
reconvergent paths) were always selected from a limited set of
nodes, as the blue-boxed IDs are concentrated around quite a
narrow area across all of the computed iterations. This brings
us to a conclusion that in this case (and in the four others as
well, as the scattering of the root node locations was pretty
similar for them) the selection algorithm was stuck to a limited
set of the reconvergent paths present in the particular circuits.
Therefore, the optimization was performed on a relatively
small part of the boolean networks for the whole time and
the remaining parts of the circuits were left unnoticed, which
caused worse reduction in comparison with the GSW method,
which selects the sub-circuits randomly. Despite not reaching
the best results in those five cases because of this issue, the
GSRW method was still able to reduce those five circuits by
a decent amount of gates.

This statement could be supported with the scattering of the
root node locations for the cases where the GSRW method
outperformed the other methods. As an example, we present
the ‘pci spoci‘ and ‘sasc‘ benchmarks. It can be seen that the
root nodes (majority of them rooting a reconvergent path) were
selected from a much wider area compared to the total number

(a) Sasc (b) Pci spoci (c) Hamming

Fig. 4: Convergence through all of the generations

(a) sasc (b) pci spoci (c) Hamming

Fig. 5: Root location through the iterations.

of nodes in the circuit. That caused the good performance of
the GSRW method not only in this case, but also in all of
the other winning cases reported in the Table I. Presence of
the blue-marked root nodes in Figures 5a, 5b shows, that the
GSRW was not always able to select a window containing a
reconvergent path, but it was able to modify the circuit in a
way that new suitable reconvergent paths appeared and were
further selected for optimization. So, being highly successful
in the reconvergent path selection does not necessarily imply
the best final circuit reduction, mainly when there is a small
number of reconvergent paths available.

V. CONCLUSION

State-of-the-art EA-based optimization is able to produce
substantially better results at the cost of a higher run time
compared to the conventional logic synthesis. However, the
run time increases with the increasing complexity of the
Boolean networks. Previous works addressed this problem by
combining the EA-based optimization with the principle of
the so-called Boolean network scoping. However, the methods
used for sub-circuit selection were causing an inefficiency
resulting in a waste of computational time, when trying to
reduce sub-curcuits, that could not be optimized any further.
Our work addressed this problem by selecting sub-circuits that
contain so-called reconvergent paths. This allowed us to focus
the computational effort on the parts of the original circuits

that have the high chance of reduction in means of number of
gates. The proposed method outperformed the earlier presented
works focused on EA-based optimization combined with sub-
circuit selection in 22 out of 28 cases. When compared to the
globally working EA-based optimization, the proposed method
won in 26 out of 28 cases. The overall average reduction
was 13.4% for the IWLS’05 benchmarks and 14.5% for the
arithmetic benchmarks. In our future work, we would like to
further improve the sub-circuit selection so that it does not
stick to a limited set of reconvergent paths as it had in some
of our experiments.

ACKNOWLEDGMENT

This work was supported by Czech Science Foundation
project GA19-10137S.

REFERENCES

[1] L. Sekanina, O. Ptak, and Z. Vasicek, “Cartesian genetic program-
ming as local optimizer of logic networks,” in 2014 IEEE Congress
on Evolutionary Computation. IEEE CIS, 2014, pp. 2901–2908.

[2] P. Fiser, J. Schmidt, Z. Vasicek, and L. Sekanina, “On logic syn-
thesis of conventionally hard to synthesize circuits using genetic
programming,” in 13th IEEE Symposium on Design and Diagnostics
of Electronic Circuits and Systems, 2010, pp. 346–351.

[3] P. Fiser and J. Schmidt, “Small but nasty logic synthesis examples,”
in Proc. 8th Int. Workshop on Boolean Problems, 2008, pp. 183–190.

[4] C. Yang and M. Ciesielski, “BDS: a BDD-based logic optimization
system,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 21, no. 7, pp. 866–876, Jul 2002.

TABLE I: Comparison of the proposed method against ABC, the method using the windowing algorithm and the CGP working
globaly. The columns ‘GSRW‘, ‘GSW‘ and ‘global‘ report the relative improvement in the number of gates compared to the
optimized circuits obtained using ABC. Column ‘ABC‘ contains parameters of the optimized circuits after mapping (’gates’
is the number of gates, ’depth’ is logic depth).

ABC GSRW GSW [11] global [9]
Benchmark PIs POs gates depth avg best average best average best

DSP 4223 3792 43491 45 4.9% 5.3% 1.4% 2.13% 0.0% 0.0%
ac97 ctrl 2255 2136 11433 10 4.6% 5.6% 3.0% 4.0% 1.4% 1.4%
aes core 789 532 21128 20 8.5% 9.8% 4.2% 5.5% 0.6% 1.7%
des area 368 70 5199 25 6.4% 7.4% 4.5% 5.2% 2.1% 2.3%
des perf 9042 1654 78972 16 7.3% 9.5% 2.8% 4.2% 0.0% 0.1%
ethernet 10672 10452 60413 23 1.9% 2.6% 1.6% 1.7% 0.0% 0.0%
i2c 147 127 1161 12 24.7% 25.7% 18.3% 18.5% 10.0% 10.7%
mem ctrl 1198 959 10459 24 9.6% 10.9% 6.2% 10.0% 24.8% 25.4%
pci bridge32 3519 3136 19020 21 6.7% 7.1% 3.4% 4.7% 0.5% 0.6%
pci spoci ctrl 85 60 1136 15 43.0% 46.9% 31.5% 36.7% 34.8% 35.7%
sasc 133 123 746 8 21.0% 24.9% 7.4% 7.4% 2.4% 2.8%
simple spi 148 132 822 11 11.9% 14.0% 6.6% 7.4% 4.4% 4.6%
spi 274 237 3825 26 9.3% 10.4% 5.0% 8.4% 13.5% 20.2%
ss pcm 106 90 437 7 12.4% 13.0% 4.8% 5.5% 2.3% 2.3%
systemcaes 930 671 11352 27 12.1% 19.8% 11.7% 12.7% 0.0% 0.0%
systemcdes 314 126 2601 25 19.5% 21.4% 15.7% 15.9% 9.1% 9.9%
tv80 373 360 8738 39 10.5% 11.6% 13.5% 14.2% 11.1% 11.3%
usb funct 1860 1692 15405 23 10.4% 14.0% 10.2% 11.3% 2.6% 2.6%
usb phy 113 73 452 9 29.1% 30.3% 17.7% 18.0% 12.2% 12.2%

average (IWLS’05 benchmarks) 15620 20 13.4% 15.3% 6.4% 6.5% 7.0% 7.6%

mult32 64 64 8225 42 21.6% 24.6% 19.5% 20.9% 0.0% 0.0%
sqrt32 32 16 1462 307 17.1% 26.2% 6.6% 9.5% 3.0% 3.0%
diffeq1 354 193 20719 218 8.7% 11.4% 25.5% 28.6% 0.0% 0.0%
div16 32 32 5847 152 20.6% 25.1% 29.5% 42.7% 0.0% 0.0%
hamming 200 7 2724 80 45.9% 52.9% 58.8% 58.9% 14.6% 14.6%
MAC32 96 65 7793 55 5.5% 6.4% 9.5% 10.5% 0.0% 0.0%
revx 20 25 8131 171 7.9% 9.0% 18.0% 21.2% 0.0% 0.1%
mult64 128 128 21992 190 12.6% 12.9% 5.0% 6.2% 0.3% 0.5%
max 512 130 3719 117 5.2% 5.6% 5.1% 5.2% 0.7% 0.8%

average (arithmetic benchmarks) 8956 148 14.5 17.4 19.7% 22.6% 2.1% 2.1%

[5] N. Vemuri, P. Kalla, and R. Tessier, “BDD-based logic synthesis for
LUT-based FPGAs,” ACM Trans. Des. Autom. Electron. Syst., vol. 7,
no. 4, pp. 501–525, Oct. 2002.

[6] L. Amaru, P. E. Gaillardon, and G. D. Micheli, “MIXSyn: An
efficient logic synthesis methodology for mixed XOR-AND/OR
dominated circuits,” in 2013 18th ASP-DAC Conference, 2013, pp.
133–138.

[7] P. Fiser, I. Halecek, and J. Schmidt, “SAT-based generation of opti-
mum function implementations with XOR gates,” in 2017 Euromicro
Conference on Digital System Design (DSD), 2017, pp. 163–170.

[8] W. Haaswijk, M. Soeken, L. Amaru, P. E. Gaillardon, and G. D.
Micheli, “A novel basis for logic rewriting,” in 2017 22nd Asia and
South Pacific Design Automation Conference (ASP-DAC), 2017, pp.
151–156.

[9] Z. Vasicek, “Cartesian GP in optimization of combinational circuits
with hundreds of inputs and thousands of gates,” in Proc. of the
18th European Conference on Genetic Programming – EuroGP, ser.
LCNS 9025. Springer, 2015, pp. 139–150.

[10] J. Kocnova and Z. Vasicek, “Towards a scalable ea-based optimiza-
tion of digital circuits,” in Genetic Programming. Cham: Springer
International Publishing, 2019, pp. 81–97.

[11] ——, “Ea-based resynthesis: An efficient tool for optimization of
digital circuits,” Genetic Programming and Evolvable Machines,
vol. 21, no. 3, pp. 287–319, 2020.

[12] A. Mishchenko and R. Brayton, “Scalable logic synthesis using a
simple circuit structure,” in Int. Workshop on Logic and Synthesis,
2006, pp. 15–22.

[13] J. D. Lohn and G. S. Hornby, “Evolvable hardware: Using evolution-

ary computation to design and optimize hardware systems,” IEEE
Computational Intelligence Magazine, vol. 1, no. 1, pp. 19–27, 2006.

[14] J. Miller and P. Thomson, “Cartesian Genetic Programming,” in
Proc. of the 3rd European Conference on Genetic Programming
EuroGP2000, ser. LNCS, vol. 1802. Springer, 2000, pp. 121–132.

[15] J. F. Miller, Cartesian Genetic Programming. Springer-Verlag,
2011.

[16] V. Vassilev, D. Job, and J. F. Miller, “Towards the Automatic
Design of More Efficient Digital Circuits,” in Proc. of the 2nd
NASA/DoD Workshop on Evolvable Hardware, J. Lohn, A. Stoica,
D. Keymeulen, and S. Colombano, Eds. Los Alamitos, CA, USA:
IEEE Computer Society, 2000, pp. 151–160.

[17] Y. Tao, L. Zhang, and Y. Zhang, “A projection-based decomposition
for the scalability of evolvable hardware,” Soft Computing, vol. 20,
no. 6, pp. 2205–2218, Jun 2016.

[18] S. Rai, W. L. Neto et al., “Logic synthesis meets machine
learning: Trading exactness for generalization,” arXiv preprint
arXiv:2012.02530, 2020.

[19] C. Wolf, J. Glaser, and J. Kepler, “Yosys-a free verilog synthesis
suite,” in Proceedings of the 21st Austrian Workshop on Microelec-
tronics (Austrochip), 2013.

[20] R. Brayton and A. Mishchenko, “ABC: An academic industrial-
strength verification tool,” in Computer Aided Verification. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 24–40.

[21] M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli,
F. Mozafari, and G. De Micheli, “The EPFL logic synthesis libraries,”
Nov. 2019, arXiv:1805.05121v2.

Appendix E

Delay-aware evolutionary
optimization of digital circuits

KOCNOVA Jitka and VASICEK Zdenek
In: 2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). Nicosia, Cyprus,
2022, pp. 188-193, doi: 10.1109/ISVLSI54635.2022.00045.

100

Delay-aware Evolutionary Optimization of Digital
Circuits

Jitka Kocnova
Brno University of Technology,

Faculty of Information Technology,
Brno, Czech Republic
ikocnova@fit.vutbr.cz

Zdenek Vasicek
Brno University of Technology,

Faculty of Information Technology,
Brno, Czech Republic
vasicek@fit.vutbr.cz

Abstract—In the recent years, machine learning techniques
have successfully been applied in various areas of digital circuit
design including logic synthesis. Evolutionary resynthesis, among
others, represents one of the machine learning approaches. This
technique is based on local iterative optimization of parts of
the original circuit. Even though the local optimization could
be inefficient compared to the optimization conducted on the
whole circuits, it has been shown that the resynthesis performs
extremely well. It produces more compact solutions compared
to the state-of-the art synthesis methods. In addition, it scales
significantly better compared to the evolutionary optimization
performed at the level of the original circuit. The previous meth-
ods have been focused solely on the optimization of the number
of gates. In this paper, we analyse how the local optimization
affects the delay of the resulting circuits and based on that, we
propose a modified approach that considers the delay in the
course of the optimization process. The proposed modification
enables to maintain the delay of the optimized circuit at a
reasonable level without a significant overhead. The evaluation
conducted on a set of non-trivial highly optimized benchmark
circuits representing various real-world circuits demonstrated
that the proposed method is able to remove a significant number
of gates while preserving the delay within the requested bounds.

Index Terms—Logic optimization, Cartesian Genetic Program-
ming, Evolutionary Resynthesis

I. INTRODUCTION

Logic synthesis is a complex process consisting of a se-
quence of steps that transform a high-level description into
a gate-level or transistor-level implementation. Even though
there is a large body of research related to the logic synthesis,
it has been shown recently that the results can be signifi-
cantly improved by incorporating various machine learning
techniques to the synthesis flow [1, 2, 3, 4].

Recently, an unconventional method inspired by the success
of evolutionary approaches such as [3, 5] has been proposed
in [6] and further elaborated in [7, 8]. The method, denoted
as evolutionary resynthesis, combines the evolutionary opti-
mization with the principle of Boolean network scoping. The
combination of both techniques is used for maintaining the
good scalability of the evolutionary synthesis process. The key
idea is to use an iterative procedure which extracts sub-circuits
that are subsequently optimized by evolutionary algorithm and
implanted back into the original circuit provided that there is
an improvement at the global level. The method is based on so

called Cartesian Genetic Programming that manipulates with
circuits represented using DAGs. Compared to the state-of-the-
art synthesis tools such as ABC, the optimization is performed
directly at the level of gates. This means that the nodes of
DAG representing an optimized circuit are common gates.
This eliminates the need of an intermediate representation
such as and-inverter graph (AIG) that could negatively affect
the performance of the logic optimization. AIG, for example,
suffers from inherent bias in representation because every 2-
input gate can be expressed using a single AIG node with
except of the XOR/XNOR gates represented using three AIG
nodes each. This bias is the main limitation of the common
synthesis tools as they mostly rely on transformations disal-
lowing an increase in the number of AIG nodes. To address
the limitation of AIG representation, various approaches were
proposed, see e.g. [1, 1, 1, 9]. The evolutionary resynthesis
avoids the bias in representation, but for the cost of a much
complicated optimization algorithm.

It has been shown that the efficiency of the evolutionary
resynthesis depends mainly on efficiency of the method used
for Boolean network scoping. A good network scoping method
should produce sub-circuits that have a high chance to be
further optimized. Three approaches have been investigated in
the past. The first approach is based on computing k-feasible
cuts [6]. The second approach uses the concept of window-
ing [7]. Both methods achieved significant reduction in terms
of the number of removed gates, but the best results have been
achieved with a more complex approach that is based on the
identification of so called reconvergent paths [8]. On average,
the latter method was able to remove more than 14.3% of
gates when evaluated on a set of highly optimized benchmark
problems representing various real-world controllers, logic and
arithmetic circuits [8].

The previous works have focused exclusively on optimizing
the number of gates, which is a legitimate requirement, but in
practice it is usually necessary to control not only the area
but also the depth of the circuits. If not constrained, the local
optimization typically causes that the depth of the optimized
circuits is increasing with the number of removed gates. Our
goal is to modify the evolutionary resynthesis so that it can
reduce the number of gates while keeping the depth of the
optimized circuit within a predefined bound.

II. BACKGROUND

This section presents relevant background on conventional
as well as evolutionary optimization of logic circuits and
introduces the notation used in the rest of the paper.

A. Boolean networks

The combinational circuits can be modelled as a directed
acyclic graph (DAG) with nodes represented by Boolean
functions [1]. Such a DAG is called Boolean network. Sources
of the graph are the primary inputs (PIs) of the network and
the sinks are the primary outputs (POs). The output of a node
may be an input to other nodes called fanouts. The inputs of
a node are called fanins. An edge connects two nodes in a
fanin/fanout relationship.

B. Limiting the Scope of Boolean Networks

Network scoping ensures a good scalability of synthesis
tools when working with large Boolean networks. It is a part
of rewriting and refactoring. Three approaches were proposed
in to limit the scope of logic synthesis to work only on a small
portion of a Boolean network – windowing, reconvergent paths
selection and cut computation [1]. We will further discuss only
the first two approaches, as they produce significantly better
results than the k-feasible cut based one.

The windowing algorithm determines the working area (a
window) by taking a node (a root node) and two integers m
and n defining the number of logic levels on the fanin/fanout
sides of the node to be included in the resulting window. The
transitive fanin is a set of nodes on the fanin side with distance-
m or less from the root node. The transitive fanout is a set
of nodes on the fanout side with distance-n or less from the
root node. These sets are used to obtain the leaf and root sets
determining the window. The window of a Boolean network
N is a subnetwork N′ ⊆ N corresponding to the subset of
nodes of the network containing nodes from root set and all
nodes on paths between the leaf set and the root set. Nodes
in the leaf set are not included in the window. The complete
algorithm can be found in [1, 7].

The second approach is similar to the windowing. At first, so
called reconvergent path is identified. Then, the reconvergent
path is expanded to a window [8]. Reconvergent paths are
those paths that lead from one source node through two
different portions of the network and meet again in a single
node n. According to the definition, the node n must be located
in the fanout cone of the source node. Including reconvergent
paths in a window increases a chance of a further optimization,
as the window may contain more redundant nodes than other
areas of the network.

C. Evolutionary Optimization of Logic Circuits

Evolutionary algorithms (EAs) have been used to synthesize
and optimize logic circuits since the late nineties [1, 1]. Miller
et al. proposed a special variant of genetic programming
coined as Cartesian Genetic Programming (CGP) [1] used to
synthesize novel implementations of arithmetic circuits [1].
Despite many advantages, the method inherently suffered from

various scalability issues and only small problem instances
were addressed. The scalability of CGP has been significantly
improved by incorporating a SAT-based combinational equiv-
alence checking engine in [3]. In the latest improvement, the
equivalence checking is driven by counterexamples produced
by SAT solver and the method can directly handle instances
having hundreds of inputs and thousands of gates [8].

A candidate circuit is typically represented as a string of
integers which fully specifies a Boolean network having ni
PIs and no POs containing up to nn nodes. Each node has
na inputs and represents a single gate with up to na inputs
that can be connected either to the output of a node placed in
the previous columns or directly to a PI. All PIs and node
outputs are assigned with a unique index. This enables us
to specify the circuit encoding. Let na = 2, which is the
common configuration for gate-level circuits. Then, each node
is associated with three integers (a, b, f); a and b defining the
input connection and f for function code. The function of a
node can be chosen from a set of nf functions Γ. In addition
to that, no integers specify where the POs are connected. An
example of CGP encoding can be seen in Figure 1. Note that
the fixed number of nodes nn does not mean that all the nodes
contribute to the POs. These features allow redundancy and
flexibility of CGP. For more details, please refer to as [7].

A

B

C
S

S

(1, 3, 3) (1, 3, 1) (2, 4, 3) (4, 2, 1) (6, 7, 0) (5, 7, 2) (6, 9)

Fig. 1: A CGP encoding of one-bit full adder consisting of five
active and one redundant gate. The circuit having ni = 3 in-
puts and no = 2 outputs is encoded using a set of nn = 6 two-
input single-output nodes whose functions are chosen from
a set of primitive functions Γ = {NOT,AND,OR,XOR}.
Redundant node and connections that do not contribute to the
outputs are highlighted using dotted line.

CGP is a population oriented approach operating with 1+λ
candidate solutions. The initial population is seeded by the
original circuit ought to be optimized. Every new population
contains the best circuit from the previous population and its λ
offsprings created using so called mutation operator randomly
modifying up to h integers. A single mutation causes either
a) reconnection of a gate, or b) primary outputs, or c) change
in function of a gate. Selection of the individuals is based on
a cost function (e.g. the number of active nodes). If there are
more individuals with the same score, the individual that has
not served as a parent will be selected as the new parent. This
procedure is repeated for a predefined number of iterations.

III. THE PROPOSED METHOD

The pseudo-code of the proposed delay-aware optimization
procedure based on the evolutionary resynthesis is shown in
Algorithm 1. The algorithm expects a Boolean network N and

produces its optimized version. The algorithm consists of three
steps executed in a loop. At the beginning, N is assigned to N ′

(see line 1). In the first step, a working area (Boolean network
W) is extracted from N ′ (see line 4). The goal is to obtain a
smaller circuit which is easier to manipulate with. To extract
a suitable sub-circuit, windowing [7] or windowing combined
with identification of reconvergent paths [8] can be used. In
the next step, W is optimized by means of the evolutionary
algorithm (CGP) (see line 9). A constrained optimization
reflecting the maximum allowed depth of N ′ specified by
parameter Dmax is performed in this step. The goal is to
minimize the number of gates contained in W provided that
the delay at the primary outputs of W stays within the required
bounds. The bounds are determined according to the delay
of the original circuit and the parameter τ . To avoid wasting
computational resources, any W that is unlikely to lead to
any improvement (e.g. small or thin windows) is discarded.
Finally, the optimized logic network W ′ replaces W in N ′

which yields a new Boolean network N ′′. This network is
evaluated with respect to the N ′ and if it receives better
reward, it replaces the N ′ (see line 12). The optimization
loop is terminated when a predefined number of iterations is
exhausted.

Algorithm 1: Delay-aware EA-based resynthesis
Input: Boolean network N , maximum allowed delay

increase 1 ≤ τ <∞
Output: Optimized network N ′, cost(N ′) ≤ cost(N),

depth(N ′) ≤ τ · depth(N)
1 N ′ ← N
2 Dmax ← τ · depth(N ′)
3 while terminated condition not satisfied do
4 W ← ExtractSubcircuit(N ′)
5 if W is not suitable candidate then
6 continue
7 DPI ← GetPIDelays(W,N ′)
8 DPO ← GetMaxAllowedPODelays(W,N ′, Dmax)
9 W ′ ← OptimizeNetworkUsingCGP(W,DPI , DPO)

10 N ′′ ← (N ′ \W) ∪ W ′

11 if cost(N ′′) ≤ cost(N ′) then
12 N ′ ← N ′′

13 return N ′

Cartesian Genetic Programming expects the Boolean net-
work in the form of a netlist encoded using string of integers.
This is achieved as follows. The nodes in W are topologically
sorted and indexed. Then, every node is converted to the corre-
sponding triplet of integers as described in Section II-C. Once
provided, the string is then optimized by means of EA. The
search procedure is driven by a cost function provided by the
user. In the case of area optimization, the cost function simply
reflects the number of active gates in CGP representation. One
possibility how to to support the delay-aware optimization is
to introduce a depth constraint into the cost function. This,
however, leads to wasted evaluations caused by violating the
maximum depth requirement due to the unconstrained changes
by mutation operator. To avoid this kind of inefficiency, we

decided to modify the mutation operator itself. Instead of
allowing to connect a mutated gate to any node topologically
preceding the mutated one, we restrict the possibilities to those
nodes guaranteeing that the maximum output delay does not
violate the predefined constraints. To achieve that, the mutation
operator needs to know delay at the inputs of a mutated
gate and maximum allowed output delay. The input delay
is calculated using the delay at primary inputs (denoted as
DPI). The maximum allowed output delay is determined by
the maximum allowed delay on the primary outputs (denoted
as DPO) that is propagated from the outputs to the mutated
node. Based on these informations, list of suitable nodes for
connection is determined.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup
The proposed method was implemented a part of Yosys

framework [1]. Two approaches for subcircuit extraction are
supported: common windowing (further denoted as GSW)
and reconvergent-paths based one (further denoted as GSRW).
The evaluation was carried out on 28 highly optimized real-
world circuits (IWLS’05 Open Cores benchmarks and a set of
arithmetic circuits1). As in [7], the benchmarks were optimized
by ABC and mapped to common 2-input gates. The goal of
the optimization process is to reduce the number of gates
while preserving the delay at the required level. For every
benchmark, six levels of τ were considered: τ = 1 which
means that delay at any PO should not be worse than the
maximum delay of the original circuit (i.e. the maximum delay
must be preserved), τ = {1.1, 1.2, 1.5, 1.75} which allows
delay increase by 10, 20, 50 and 75%, and τ = ∞ which
does not put any restrictions on the delay. The latter case
corresponds to the original counterparts of GSW and GSRW
presented in [7] and [8].

Five independent runs were executed for every bench-
mark to obtain statistically sound results. All of the opti-
mized circuits were formally verified with respect to their
original form (ABC command ‘cec’) to avoid any error in
the evaluation. The procedure OptimizeNetworkUsingCGP
is implemented as described in Section II-C. The param-
eters are: na = 2, λ = 1, h = 2, nn = |W |,
Γ = {BUF,NOT,AND,OR,XOR,NAND,NOR,XNOR}.
To match the setup with that used in our previous works,
the procedure is executed niters = 2 · 104 times and
nevals = 5 · 105 candidate solutions are generated in each
iteration. Four volume settings for GSRW are considered:
rpmax = (10, 20, 50, 100) gates. The minimal and maximal
volume of the selection is set to rwmin = 5, rwmax = 100
nodes. For τ = 1, the gates on the longest path were omitted
during the sub-circuit selection in order to minimize the chance
of extending the delay during the optimization.

B. Experimental Results
The overall statistics calculated from the all considered

experiments are summarized in Tab. I (GSW) and Tab. II

1The benchmarks can be downloaded from https://lsi.epfl.ch/MIG

TABLE I: The achieved gate reduction for the proposed method GSW. Average relative improvement in the number of gates
compared to the optimized circuits obtained using ABC are provided. Column ‘ABC‘ contains parameters of the optimized
circuits after mapping, namely |N | denoting the number of utilized gates and D = depth(N). Column D′ is depth of N ′

obtained for τ =∞.

ABC Relative gate reduction with respect to |N |
Benchmark PIs POs |N | D τ = 1.0 τ = 1.1 τ = 1.2 τ = 1.5 τ = 1.75 τ =∞ [8] D′ D′/D

DSP 4223 3792 43491 45 0.2% 0.4% 0.3% 0.2% 0.1% 1.4% 62 1.4
ac97 ctrl 2255 2136 11433 10 2.2% 2.1% 2.9% 2.9% 2.2% 3.0% 13 1.3
aes core 789 532 21128 20 0.5% 1.1% 0.3% 0.4% 0.3% 4.2% 28 1.4
des area 368 70 5199 25 0.3% 0.6% 0.5% 0.6% 0.8% 4.5% 35 1.4
des perf 9042 1654 78972 16 0.1% 0.1% 0.1% 0.1% 0.1% 2.8% 24 1.5
ethernet 10672 10452 60413 23 0.3% 0.1% 0.1% 0.1% 0.1% 1.6% 33 1.4
i2c 147 127 1161 12 7.5% 11.8% 15.0% 18.4% 17.8% 18.3% 21 1.8
mem ctrl 1198 959 10459 24 0.7% 2.0% 0.9% 2.7% 1.9% 6.2% 44 1.8
pci bridge32 3519 3136 19020 21 0.9% 0.5% 1.3% 1.2% 1.1% 3.4% 47 2.2
pci spoci ctrl 85 60 1136 15 1.3% 14.3% 12.7% 15.3% 17.3% 31.5% 23 1.5
sasc 133 123 746 8 4.5% 4.5% 4.9% 6.1% 6.1% 7.4% 7 0.9
simple spi 148 132 822 11 2.5% 3.2% 4.5% 4.4% 4.6% 6.6% 18 1.6
spi 274 237 3825 26 1.2% 2.9% 4.0% 1.2% 4.0% 5.0% 32 1.2
ss pcm 106 90 437 7 1.2% 1.5% 5.1% 2.8% 2.7% 4.8% 11 1.6
systemcaes 930 671 11352 27 0.5% 0.2% 0.2% 0.4% 1.5% 11.7% 32 1.2
systemcdes 314 126 2601 25 2.2% 5.7% 10.4% 11.1% 13.3% 15.7% 31 1.2
tv80 373 360 8738 39 1.6% 0.4% 2.6% 2.3% 3.1% 13.5% 57 1.5
usb funct 1860 1692 15405 23 0.5% 1.3% 1.0% 1.2% 1.3% 10.2% 47 2.0
usb phy 113 73 452 9 13.2% 11.1% 16.8% 15.4% 13.8% 17.7% 12 1.3

average (IWLS’05 benchmarks) 15620 – 2.2% 3.4% 4.4% 4.6% 4.8% 8.9% – 1.5

mult32 64 64 8225 42 0.7% 0.7% 0.6% 0.7% 1.3% 19.5% 85 2.0
sqrt32 32 16 1462 307 0.7% 3.4% 2.9% 3.4% 3.3% 6.6% 370 1.2
diffeq1 354 193 20719 218 2.0% 2.0% 1.4% 1.2% 0.7% 25.5% 250 1.1
div16 32 32 5847 152 0.5% 4.4% 4.0% 5.7% 2.0% 29.5% 280 1.8
hamming 200 7 2724 80 0.9% 12.9% 9.0% 10.3% 12.1% 58.8% 83 1.0
MAC32 96 65 7793 55 1.0% 2.0% 1.4% 3.6% 2.6% 9.5% 142 2.6
revx 20 25 8131 171 1.7% 1.2% 4.7% 4.2% 5.1% 18.0% 221 1.3
max 512 130 3719 117 0.4% 4.6% 3.2% 2.4% 3.6% 5.1% 127 1.1

average (arithmetic benchmarks) 8956 – 1.0% 3.9% 3.4% 3.9% 3.8% 21.6% – 1.5

(GSRW). The first three columns of both tables contain infor-
mation about the benchmarks (name, number of PIs and POs).
The next two columns show parameters of the optimized and
mapped circuits produced by ABC; the number of gates and
logic depth are given. These numbers serve as a baseline for
our comparison. Then, the achieved improvement expressed as
the relative reduction with respect to the baseline is reported
for the windowing and reconvergent paths based methods. For
each method, we report the average improvement in means
of reduction of the gates for every benchmark circuit. The
average is calculated from all five independent runs. For
GSRW method, however, twenty runs are used because of
various values of rpmax parameter. The last three columns
show parameters of the best optimized circuit obtained for
τ = ∞, i.e. the case when only the area is minimized. In
particular, we included the relative gate reduction, delay of the
resulting circuit, and ratio between the delay of the original
and optimized circuit are provided. Due to the limited space,
we do not report the delay for other configurations, but the
delay is in fact typically equal or close to τD.

When we compare the average results of constrained (τ <
∞) and unconstrained (tau = ∞) optimization, we can see
that the limitation of the maximum delay (logic depth) has a
substantial impact on the size of the obtained circuits. This

observation is valid for GSW as well as GSRW method.
The achieved gate reduction of the constrained optimization
is much lower compared to the unconstrained one and it
increases with increasing τ . It is clear that we can’t achieve the
same results in cases where the ratio D′/D is higher than τ .
This is the case of pci bridge32, for example. When optimized
with the unconstrained setup, the benchmark size decreased
by 3.4% on the average. However, the logical depth increased
by a factor of 2.2. Given that the maximum allowable τ is
1.75, it is clear that the same reduction cannot be achieved.
There are also cases, however, where the ratio D′/D is lower
than 1.75 and yet the constrained optimization did not achieve
the same or even a comparable reduction. This is particularly
noticeable in the case of arithmetic instances such as mult32,
div16, diffeq1 or revx.

We analysed the parameters of the circuits in the course
of the optimization when τ = ∞. We found that the depth
of the optimized circuits usually increases in each iteration
as the number of removed gates increases. At some point
it reaches a maximum and then starts to decrease. After a
certain number of iterations, the decreasing phase stops and
the number of gates usually start to oscillate around a certain
value. This behaviour is typical for controller circuits. For
arithmetic benchmarks which are much more complex, the

TABLE II: The achieved gate reduction for the proposed method using windowing based on the reconvergent paths (GSRW).
Average relative improvement in the number of gates compared to the optimized circuits obtained using ABC are provided.
Column ‘ABC‘ contains parameters of the optimized circuits after mapping, namely |N | denoting the number of utilized gates
and D=depth(N). Column D′ is depth of N ′ obtained for τ =∞.

ABC Relative gate reduction with respect to |N |
Benchmark PIs POs |N | D τ = 1.0 τ = 1.1 τ = 1.2 τ = 1.5 τ = 1.75 τ =∞ [8] D′ D′/D

DSP 4223 3792 43491 45 0.2% 0.5% 0.1% 0.2% 0.1% 4.9% 71 1.6
ac97 ctrl 2255 2136 11433 10 1.0% 2.6% 2.7% 2.5% 2.5% 4.6% 14 1.4
aes core 789 532 21128 20 0.6% 0.8% 0.3% 0.2% 0.3% 8.5% 32 1.6
des area 368 70 5199 25 0.2% 0.3% 0.1% 0.4% 0.4% 6.4% 35 1.4
des perf 9042 1654 78972 16 0.1% 0.1% 0.1% 0.1% 0.1% 7.3% 26 1.6
ethernet 10672 10452 60413 23 0.2% 0.1% 0.1% 0.1% 0.1% 1.9% 30 1.3
i2c 147 127 1161 12 5.8% 8.6% 13.2% 15.3% 16.4% 24.7% 27 2.2
mem ctrl 1198 959 10459 24 0.6% 0.5% 1.2% 2.5% 2.6% 9.6% 45 1.9
pci bridge32 3519 3136 19020 21 0.1% 0.6% 0.4% 0.9% 0.8% 6.7% 46 2.2
pci spoci ctrl 85 60 1136 15 6.8% 4.6% 9.1% 17.5% 35.1% 43.0% 23 1.5
sasc 133 123 746 8 5.1% 1.9% 6.2% 7.3% 5.2% 21.0% 10 1.2
simple spi 148 132 822 11 1.2% 4.3% 4.4% 5.0% 5.9% 11.9% 28 2.5
spi 274 237 3825 26 0.9% 0.3% 0.8% 2.3% 4.6% 9.3% 32 1.2
ss pcm 106 90 437 7 2.8% 2.1% 6.2% 6.2% 5.7% 12.4% 12 1.7
systemcaes 930 671 11352 27 1.2% 0.9% 0.3% 0.6% 0.2% 12.1% 36 1.3
systemcdes 314 126 2601 25 2.9% 13.9% 11.9% 10.1% 8.3% 19.5% 32 1.3
tv80 373 360 8738 39 1.0% 3.2% 3.1% 1.7% 1.6% 10.5% 61 1.6
usb funct 1860 1692 15405 23 0.6% 0.3% 0.2% 0.3% 2.4% 10.4% 31 1.3
usb phy 113 73 452 9 15.6% 17.7% 15.5% 17.1% 16.2% 29.1% 13 1.4

average (IWLS’05 benchmarks) 15620 20 2.5% 3.3% 4.0% 4.8% 5.7% 13.4% – 1.6

mult32 64 64 8225 42 1.8% 2.6% 3.6% 3.6% 1.4% 21.6% 61 1.5
sqrt32 32 16 1462 307 0.2% 1.7% 2.3% 1.9% 1.1% 17.1% 339 1.1
diffeq1 354 193 20719 218 0.1% 0.5% 0.1% 0.4% 0.2% 8.7% 283 1.3
div16 32 32 5847 152 0.7% 1.0% 1.2% 0.9% 2.2% 20.6% 247 1.6
hamming 200 7 2724 80 1.9% 12.4% 13.9% 17.5% 21.3% 45.9% 87 1.1
MAC32 96 65 7793 55 2.8% 1.5% 1.1% 1.4% 1.7% 5.5% 60 1.1
revx 20 25 8131 171 0.6% 2.7% 2.3% 2.8% 2.1% 7.9% 128 0.7
max 512 130 3719 117 1.1% 2.7% 2.0% 2.2% 1.3% 5.2% 132 1.1

average (arithmetic benchmarks) 8956 148 1.1% 3.1% 3.3% 3.8% 3.9% 16.6% – 1.2

decreasing phase is much shorter. The relationships between
the initial depth, the final depth and the worst observed depth
are shown in Figure 2. We assume that this behavior is due
to the nature of evolutionary optimization. As the optimized
circuit becomes smaller, the chance of gate removal in the
extracted subcircuits decreases. However, this does not mean
that the subcircuit cannot be modified and restructured. Since
the depth is not under control when τ = ∞, the depth can
grow indefinitely. Interestingly, there is an implicit regulatory
mechanism that prevents from growing indefinitely.

Comparing the overall results across different values of
τ , we can observe that GSRW performs slightly better for
controller circuits. For arithmetic circuits, however, there is
no significant difference between the performance of GSW
and GSRW method. The success of the optimization is highly
dependent on the structure of a particular benchmark. There
are benchmarks that offer a high degree of freedom with
respect to redundancy. On the other hand, there are cases
that can be reduced only slightly. This suggests that the
initial circuit optimized by ABC has probably no redundancy.
Despite of the fact that the constrained optimization achieves
worse results compared to the unconstrained one, the results
are still encouraging because in all the cases we were able to
improve the initial highly optimized circuits even for τ = 1, a

setting that requires keeping the worst-case delay at the same
value as the initial circuit. When we enable to increase the
the circuit’s depth, the improvement increases. In the case of
the GSRW method, for example, the maximum number of
removed gates was around 35% (pci spoci ctrl) and more
than 21% (hamming), while the circuit’s depth was increased
by 75% of the original value.

V. CONCLUSION

EA-based optimization is able to improve the results of
the conventional logic synthesis. However, its performance
deteriorates with increasing circuit complexity. Previous works
successful addressed this problem by combining the EA-
based optimization with the principle of the Boolean network
scoping. However, this approach could lead to a significant
increase in the depth of the circuits. We solved this problem
by constraining the optimization to force the EA to explore
only candidate solutions satisfying a depth limit. In order to
do that, we modified the mutation operator.

The evaluation performed on a set of complex benchmark
circuits confirmed that it is possible to constrain the depth
according to the user requirements and still achieve a good
reduction in the number of gates. However, the limitation of
the circuit’s depth has a significant effect on the achieved
reduction.

(a) Controller benchmarks

(b) Arithmetic benchmarks

Fig. 2: The initial, final and worst depth observed during optimization using GSW and GSRW methods for τ =∞.

ACKNOWLEDGMENT

This work was supported by the Czech science foundation
project GA22-02067S.

REFERENCES

[1] G. Huang, J. Hu et al., “Machine learning for electronic design
automation: A survey,” vol. 26, no. 5, 2021.

[2] P. Fiser, J. Schmidt, Z. Vasicek, and L. Sekanina, “On logic syn-
thesis of conventionally hard to synthesize circuits using genetic
programming,” in 13th IEEE Symposium on Design and Diagnostics
of Electronic Circuits and Systems, 2010, pp. 346–351.

[3] Z. Vasicek, “Cartesian GP in optimization of combinational circuits
with hundreds of inputs and thousands of gates,” in Proceedings of
the 18th European Conference on Genetic Programming, ser. LCNS
9025. Springer International Publishing, 2015, pp. 139–150.

[4] S. Rai, W. L. Neto, Y. Miyasaka, X. Zhang, M. Yu, Q. Y. M.
Fujita, G. B. Manske, M. F. Pontes, L. S. Junior, M. S. de Aguiar
et al., “Logic synthesis meets machine learning: Trading exactness
for generalization,” arXiv preprint arXiv:2012.02530, 2020.

[5] L. Sekanina, O. Ptak, and Z. Vasicek, “Cartesian genetic program-
ming as local optimizer of logic networks,” in 2014 IEEE Congress
on Evolutionary Computation. IEEE CIS, 2014, pp. 2901–2908.

[6] J. Kocnova and Z. Vasicek, “Towards a scalable EA-based optimiza-
tion of digital circuits,” in Genetic Programming. Cham: Springer
International Publishing, 2019, pp. 81–97.

[7] ——, “EA-based resynthesis: An efficient tool for optimization of
digital circuits,” Genetic Programming and Evolvable Machines,
vol. 21, no. 3, pp. 287–319, 2020.

[8] J. Kocnová and Z. Vasicek, “Resynthesis of logic circuits using
machine learning and reconvergent paths,” in 2021 24th Euromicro
Conference on Digital System Design (DSD), 2021, pp. 69–76.

[9] C. Yang and M. Ciesielski, “BDS: a BDD-based logic optimization
system,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 21, no. 7, pp. 866–876, Jul 2002.

[10] N. Vemuri, P. Kalla, and R. Tessier, “BDD-based logic synthesis for
LUT-based FPGAs,” ACM Trans. Des. Autom. Electron. Syst., vol. 7,
no. 4, pp. 501–525, Oct. 2002.

[11] L. Amaru, P. E. Gaillardon, and G. D. Micheli, “Mixsyn: An effi-
cient logic synthesis methodology for mixed xor-and/or dominated
circuits,” in 2013 18th Asia and South Pacific Design Automation
Conference (ASP-DAC), 2013, pp. 133–138.

[12] P. Fiser, I. Halecek, and J. Schmidt, “Sat-based generation of opti-
mum function implementations with xor gates,” in 2017 Euromicro
Conference on Digital System Design (DSD), 2017, pp. 163–170.

[13] A. Mishchenko and R. Brayton, “Scalable logic synthesis using a
simple circuit structure,” in Int. Workshop on Logic and Synthesis,
2006, pp. 15–22.

[14] J. D. Lohn and G. S. Hornby, “Evolvable hardware: Using evolution-
ary computation to design and optimize hardware systems,” IEEE
Computational Intelligence Magazine, vol. 1, no. 1, pp. 19–27, 2006.

[15] J. Miller and P. Thomson, “Cartesian Genetic Programming,” in
Proc. of the 3rd European Conference on Genetic Programming
EuroGP2000, ser. LNCS, vol. 1802. Springer, 2000, pp. 121–132.

[16] J. F. Miller, Cartesian Genetic Programming. Springer, 2011.
[17] V. Vassilev, D. Job, and J. F. Miller, “Towards the Automatic

Design of More Efficient Digital Circuits,” in Proc. of the 2nd
NASA/DoD Workshop on Evolvable Hardware, J. Lohn, A. Stoica,
D. Keymeulen, and S. Colombano, Eds. Los Alamitos, CA, USA:
IEEE Computer Society, 2000, pp. 151–160.

[18] C. Wolf, J. Glaser, and J. Kepler, “Yosys-a free verilog synthesis
suite,” in Proceedings of the 21st Austrian Workshop on Microelec-
tronics (Austrochip), 2013.

	Introduction
	Conventional Approaches
	Unconventional Approaches
	Research Objectives
	Thesis Outline

	State of the Art
	Boolean Networks
	Boolean Optimization
	Scaling of Boolean Synthesis
	Evolutionary Synthesis of Logic Circuits
	Cartesian Genetic Programming

	Research Summary
	Methodology
	Evolutionary optimization
	Limiting the Scope of Boolean Networks
	Targeting the Non-uniform Delay on the Sub-circuit's Inputs
	Experimental Evaluation

	Papers
	Paper I
	Paper II
	Paper III
	Paper IV
	Paper V

	List of Other Papers

	Discussion and Conclusions
	Future Work

	Bibliography
	Related Papers
	Towards a Scalable EA-based Optimization of Digital Circuits
	EA-based refactoring of mapped logic circuits
	EA-based Resynthesis: An Efficient Tool for Optimization of Digital Circuits
	Resynthesis of logic circuits using machine learning and reconvergent paths
	Delay-aware evolutionary optimization of digital circuits

