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Abstract
This work aims to create the clustering part of a new version of the clustering tool named
Clusty, which is developed by Avast Software. Clusty is a tool for automatic analysis and
online clustering of all incoming samples. The most notable shortcomings are using a single
criterion for clustering, vertical scalability, and lack of support for achieving high avail-
ability. Among the good features belong a good performance, interpretability of clusters’
origin, and an ability to use other techniques like YARA rules.

The designed tool overcome the shortcomings while keeping the features. None of the
existing clustering methods is being used because none of them had satisfied the require-
ments. Instead, three new methods are proposed. They are based on the method in the
current version of Clusty and the standard methods. The tool uses so-called rules to allow
using multiple clustering methods concurrently.

The clustering results can be considered better compared to the results from the current
version. This work proposes a solution for the shortcomings and shows the usable clustering
methods.

Abstrakt
Cieľom tejto práce je vytvorenie zhlukovacej časti novej verzie nástroja Clusty, ktorý je
vyvíjaný spoločnosťou Avast Software. Nástroj slúži na automatickú analýzu a zhlukovanie
rozličných typov súborov. Jeho najväčšími nedostatkami sú zhlukovanie súborov na základe
jediného kritéria, zlá škálovateľnosť a dostupnosť v prípade poruchy. Medzi prínosy patria
výkonnosť, vysvetliteľnosť vzniku zhlukov a možnosť používať techniky ako YARA pravidlá.

Navrhnuté riešenie rieši nedostatky súčasnej verzie, pričom ponecháva požadované vlast-
nosti. Na zhlukovanie nepoužíva žiadnu z existujúcich metód, pretože žiadna zo zvažovaných
metód nespĺňala kladené požiadavky. Namiesto toho sú predstavené tri nové metódy za-
ložené na metóde použitej v aktuálnej verzii nástroja Clusty a štandardných metódach.
Pri zhlukovaní používa systém tzv. pravidiel, ktorý umožňuje používanie viacerých metód
súčasne a s rôznymi konfiguráciami.

Výsledné zhluky je možné považovať za lepšie ako pri použití súčasnej verzie. Práce
navrhuje riešenie problémov nástroja Clusty, a predstavuje použiteľné metódy na zhluko-
vanie.
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Rozšírený abstrakt
Termín škodlivý softvér (angl. malware zo slov malicious a software) sa používa na popis

softvéru, ktorý je vytvorený za účelom škodenia. Môže byť použitý na ničenie, získavanie
alebo rozširovanie informácii bez vedomia používateľa. Podľa jeho činnosti a spôsobu akým
sa šíri ho môžeme rozdeliť do kategórii, ako napríklad trójsky kôň, vírus, ransomware alebo
adware. Nie je nezvyčajné pokiaľ softvér spadá do viacerých kategórii súčasne.

Vďaka používaniu rozličných techník, ako napríklad polymorfizmus, obfuskácia, zabalo-
vanie alebo šifrovanie, sú autori škodlivého softvéru schopní vytvárať stále nové varianty,
čím sťažujú jeho detekciu antivírovými spoločnosťami. Podľa AV-Test, za rok 2020 bolo
zaznamenaný nárast variánt škodlivého softvéru o 62% oproti predošlému roku.

Kvôli veľkému množstvu nových vzoriek každý deň nie sú analytici schopní manuálne
skúmať každú vzorku. Sú potrebné technológie, ako zhlukovanie alebo klasifikácia, ktoré
zoskupujú vzorky do skupín. Skupina by mala obsahovať vzorky softvéru z jednej rodiny,
teda rôzne varianty toho istého škodlivého softvéru. Zoskupovanie vzoriek do skupín s podob-
nými vlastnosťami môže viesť k lepšiemu porozumeniu stavby softvéru, napríklad odhalenie
spoločných častí kódu. Okrem toho môžu analytici vynechať známe vzorky a venovať sa
novým neznámym vzorkám. Taktiež pozorovanie tvorby zhlukov a ich zmien môže viesť ku
detekcií anomálii.

Avast Software je jedna z antivírových spoločností. Denne jej prichádzajú milióny
nových vzoriek. Jedným z nástrojov, ktoré firma používa na vysporiadanie sa s veľkým
množstvom vzoriek, je nástroj Clusty, ktorého úlohou je automatická analýza a zhluko-
vanie vzoriek. Je to interný nástroj využívajúci statickú a dynamickú analýzu na zhluko-
vanie vzoriek. Každý zhluk je vytvorený na základe jedného kritéria (vlastnosti vzorky),
ako napríklad PDB cesta v prípade PE kategórie. Clusty podporuje binárne súbory, doku-
menty, textové súbory, a iné. Zvyčajne najdôležitejšie kritérium je YARA pravidlo, ktoré je
buď vytvorené manuálne analytikom, alebo automatizovane pomocou interného alebo ex-
terného nástroja. YARA pravidlá umožňujú popísať škodlivý softvér na základe textových
a binárnych vzorov. Každý zhluk má minimálne jednu vlastnosť, ktorá je spoločná pomedzi
všetkými vzorkami v zhluku.

Cieľom tejto práca je navrhnúť zhlukovaciu časť pre novú verziu nástroja Clusty, pričom
je potrebné sa zamerať na nedostatky súčasnej verzie a zároveň ponechať jej dobré vlast-
nosti. Identifikácia a analýza vzoriek, ani ďalšie jeho časti, nie sú súčasťou tejto práce.
Je však potrebné zohľadniť ich pre prípadné doplnenie v budúcnosti. Nedostatky súčasnej
verzie sa týkajú jednak použitej zhlukovacej metódy a jednak architektúry.

Zhlukovacia metóda je založená na manuálne vytvorenom zozname vlastností, ktorý sa
postupne prechádza od najprioritnejšej, až po kým nie je možné aktuálnu vlastnosť použiť.
Podmienka, ktorá určuje použiteľnosť vlastnosti, je často založená na prítomnosti danej
vlastnosti vo vzorke. Napríklad ak má vzorka PDB cestu, tak sa použije práve táto cesta
a vzorka sa zazhlukuje do zhluku s rovnakou cestou. Použitie jediného kritéria pri zhluko-
vaní sa ukázalo byť náchylné na podvrhnutie. Napríklad náhodne generované hodnoty by
viedli ku zhlukom o veľkosti jedinej vzorky. Opačným prípadom by bolo generovanie hod-
nôt, ktoré sa nachádzajú vo vzorkách považovaných za bezpečný súbor. Použitie viacerých
kritérií súčasne by mohlo tento problém vyriešiť.

Najvýraznejšie nedostatky architektúry nástroja Clusty sú čiste vertikálna škálovateľnosť
a zlá odolnosť voči poruchám. Clusty nie je schopný bežať vo viacerých inštanciách súčasne.
Nová verzia by mala podporovať škálovateľnosť a odolnosť voči výpadkom.

Clusty má však aj veľa užitočných vlastností, ktoré je potrebné zachovať. Napríklad
nekvalitné vzorky a zhluky môžu byť dodatočne zakázané. Pri vzorkách to znamená, že



vzorka sa nezazhlukuje. Pri zhlukoch to znamená, že zhluk už viac nevznikne. Taktiež
je možné vzorky a zhluky opätovne zazhlukovať. Je to užitočné najmä v prípade, keď sú
dostupné nové informácie o vzorke. V neposlednom rade je užitočné poznať vlastnosť, na
základe ktorej zhluk vznikol. Táto znalosť môže byť využitá analytikmi alebo automatizo-
vanými nástrojmi pri hľadaní spoločných vlastností škodlivého softvéru.

Navrhnutý nástroj bol pracovne pomenovaný Rusty (spojenie slov Rust a Clusty). Jeho
architektúra je navrhnutá tak, aby bol škálovateľný a bolo ho možné spustiť vo viac-
erých spolupracujúcich inštanciách na rovnakom alebo odlišnom servery. Ako databázu
používa viac-modelovú databázu ArangoDB. Databáza je použitá na ukladanie dokumen-
tov, vzťahov a aj na synchronizáciu. Na distribúciu práce je použitý RabbitMQ server,
ktorý rovnomerne rozdeľuje vzorky jednotlivým workerom. ArangoDB aj RabbitMQ tak-
tiež podporujú škálovateľnosť a vysokú dostupnosť. Rusty používa systém tzv. pravidiel,
ktoré podobne ako v nástroji Clusty umožňujú definovať zoznam priorít. Každé pravidlo
môže definovať ľubovoľnú podmienku použiteľnosti a taktiež podmienku pre vloženie do zh-
luku. Tento systém nijako nebráni použitiu jedinej zhlukovacej metódy pri použití jediného
pravidla, kde by podmienka použitia pravidla bola vždy splnená. Týmto použitím by bolo
možné systém pravidiel zanedbať. Pravidlá však najmä umožňujú použitie vlastností ako
napríklad YARA pravidlá, ktoré sa používajú v nástroji Clusty s veľmi vysokou prioritou.

V práci sú zvážené a popísané najznámejšie typy a reprezentanti zhlukovacích metód,
ako aj súčasné metódy zhlukovania zamerané špecificky na škodlivý softvér. Žiadna z týchto
metód sa však neukázala byť vhodná, a to najmä z dôvodu nemožnosti zachovania súčas-
ných vlastností nástroja Clusty, ako napríklad kontinuálne zhlukovanie. Ako náhrada sú
predstavené tri nové zhlukovacie metódy, založené na znalostiach z nástroja Clusty a exis-
tujúcich metódach. Tieto metódy sú implementované do nástroja Rusty a otestované po-
mocou rôznych metrík, ako napríklad počet zhlukov so zmiešanými klasifikáciami vzoriek.
Výsledky zhlukovaní sú taktiež porovnané s výsledkami nástroja Clusty. Konkrétne sa jedná
o výsledky za použitia všetkých metód v nástroji Clusty a za vynechania určitých špecifick-
ých metód ako YARA. Pre každú z predstavených metód boli rovnako vykonané rýchlostné
testy zhlukovania. Následne bola na základe výsledkov vybraná najlepšia z metód. Táto
metóda vykazuje dobré výsledky, istým spôsobom lepšie ako nástroj Clusty. Hodnotenie
a porovnávanie výsledkov prebiehalo komplexným spôsobom, keďže hodnotiť kvalitu zh-
lukov nie je samo o sebe postačujúce. Napríklad celkový počet zhlukov je ďalší kľúčový
aspekt, ktorý je potrené pri vyhodnotení a porovnávaní zohľadniť. Výsledná metóda je
však zároveň aj najpomalšia. V budúcnosti je možné vylepšiť jej výkonnosť, alebo využiť
potenciál ďalšej z metód, ktorá si vyžaduje viacej času a experimentov.

Implementácia je otestovaná sadov jednotkových, integračných a koncových testov. Sú
prekonané nedostatky nástroja Clusty a ponechané jeho dobré vlastnosti. Nástroj je možné
v budúcnosti rozšíriť napríklad o nové kategórie alebo zhlukovacie metódy. Pre kompletnosť
novej verzie je potrebné doimplementovať ďalšie časti nástroja Clusty, napr. identifikáciu
a analýzu vzoriek.
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Chapter 1

Introduction

Since the notion of malware in 1971, it has become a major threat in modern society.
Increasing digitalisation also increased interest to empower the rise of dedicated teams and
cybercriminal organisations. The Internet has become home to large black markets to
purchase and distribute malware [9]. Malware is not related only to personal computers.
It is also prevalent in conventional servers, mobiles, and IoT devices [3].

The term malware is used to describe malicious software intentionally designed to cause
harm in various ways. It can be used to destroy, gather, or distribute information without
the user’s knowledge [33]. Malware can be divided into non-exclusive categories like trojan,
virus, ransomware, and adware [6].

Using different techniques like polymorphism, obfuscation, packing, or encryption, mal-
ware authors can create many different variations of the same malware, making it even
harder to detect by anti-malware companies. Developing a signature for one version does
not have to be sufficient to detect other versions [9]. According to Symantec, the number of
detected malware variants increased by 62% in 2020 compared with the previous year [17].

Because of the a sheer amount of new samples each day, malware analysts cannot
analyse them manually. Hence, automated techniques like classification or clustering are
required to categorise malware into malware strains [12]. Grouping samples into groups
with similar characteristics can help better understand relevant information, such as code
reuse and malware evolution. Furthermore, analysts can discard all samples belonging to
known strains and focus on new ones [23]. Monitoring of created clusters could lead to
a better understanding of activities and detecting anomalies [9].

Avast Software is one of the anti-virus companies, and it receives millions of new samples
each day. To be able to process them, a tool for automatic analysis and clustering of newly
arrived samples named Clusty was developed. Clusty is an Avast internal tool that uses
both static and dynamic analysis for the clustering of samples. Each cluster is based on
a single criterion (samples’ property), like the PDB path for the PE category. It supports
binaries, documents, text files, and others. The most prioritised criterion is often clustering
by YARA [2] rules, which can be written by an analyst or automatically by internal tools.
Clustering results can also be classified automatically or by analysts. Each cluster has at
least one property (used criterion) shared across all samples inside [19].

The aim of this work is to design a new version of Clusty’s clustering part from scratch,
focusing on the shortcomings of the current version. Other parts like sample analysis, web
preview, or cluster classification are not part of this work, but there should be a possibility
to implement them later. The shortcomings of the currently used version concern the used
clustering method and the architecture. The clustering method uses a manually created list
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of criterion, which are consecutively evaluated, and the first matching condition is used. The
condition is usually a presence of a specific attribute in a sample. Using just a single criterion
turned out to be prone to adversarial attacks. It can lead to small clusters or clusters having
different samples. Using multi-criterion clustering can prevent the creation of such clusters.
The most notable shortcoming of the architecture is pure vertical scalability. Clusty is
not able to run in multiple instances of clustering within the same clustering result. This
inability also leads to a single point of failure. Multiple instances running at the same
time would cover outages. But Clusty has a lot of features as well, which have to be kept.
For example, clusters can be blacklisted (they will not be created again) or reclustered on
demand. Also, it is clear to see which criterion the cluster was created from. This knowledge
can be further used by analysts or automated tools to find specific malware signatures.

The work is organised as follows. Types of clustering methods with some representa-
tives algorithms and the state of the art malware clustering approaches are described in
Chapter 2. Description of malware, its variants, and the methods of malware analysis are
described in Chapter 3. Clusty, its architecture, and both older versions are described in
Chapter 4. It also contains a description of a sample used in clustering. The design of the
new version is presented in Chapter 5. Expectations of the new version are stated at the
beginning. Then, an architecture considering those expectations is presented. In the end,
it contains a review of the clustering methods and a description of the new ones. Imple-
mentation of the designed tool, proposed clustering methods, and all auxiliary scripts are
described in Chapter 6. Experiments, the results, and the used dataset are described in
Chapter 7. Chapter 8 describes the tests of the implementation. The whole work is then
summarised in Chapter 9. The last Chapter 10 is a conclusion.
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Chapter 2

Clustering

The chapter is based on [11,31,32]. Clustering is the process of dividing objects into classes
(clusters) based on similarity. Classes are then made up of objects that are similar to each
other and different to objects in other classes. The similarity is determined based on the
values of these objects’ attributes, often using the so-called distance functions.

From the point of view of machine learning, it is unsupervised learning. Clustering does
not require any predefined classes or any training set of examples.

The clustering algorithms can require a specific type of data. The most used data types
are described in Section 2.1.

Different clustering algorithms lead to different clustering results. Since clustering is not
controlled by humans but by the used algorithm, its result can discover new patterns in the
data. Dividing algorithms into categories is complicated because categories can overlap,
i.e. the method can have characteristics from several categories. In general, however,
clustering methods can be divided into several groups. Book [11] divides algorithms into four
basic groups: partitioning methods, hierarchical-based methods, density-based methods,
and grid-based methods. According to [32] we can add two more groups: model-based
methods and high-dimensional methods. The properties required for clustering methods
are described in Section 2.2 and the individual groups, together with examples of algorithms,
are described in Section 2.3.

2.1 Data Types
Data sets are made up of data objects representing a real-world entity. These objects can
also be referred to as samples. They are described mostly by their attributes. An attribute
(also called dimension) is a data field representing a feature of the sample. Based on the
type of value an attribute can have, we can divide them into the following categories:

Nominal attributes Nominal attributes, also referred to as categorical, have values with-
out a meaningful order. They are a generalisation of binary attributes because of allowing
more than two values. But the range of values is predefined and finite. An example of
nominal attribute is a colour, which can be red, green, etc. These values can be represented
by numbers, but it does not make sense to find their average for example.

Binary attributes A specialisation of nominal attributes is binary attributes allowing
only two possible values: 0 and 1. The typical interpretation of 0 is an absence of the
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attribute, and 1 is its presence. Binary attributes can also be referred to as boolean values
if an interpretation of values is true and false.

Ordinal attributes Ordinal attributes have defined ordering of values, but the magni-
tude between them is unknown. For example, dividing size into three categories: small,
medium, and large. We can say what is larger but not by how much larger it exactly is.

Numeric attributes Nominal, binary, and ordinal attributes are qualitative. It means
that even if they would be represented in a numeric form, the number would mean a code
category rather than some measurable value. On the contrary, numeric values are quantita-
tive, i.e. they are measurable. They can be divided further into Interval-Scaled attributes
(e.g. temperature) and Ratio-Scaled attributes (e.g. height).

2.2 Properties of Methods
In addition to dividing the algorithms into certain categories, we can compare algorithms
according to their properties. Typical properties required of the clustering method are:

Scalability: Clustering algorithms usually work well on a small amount of data. In prac-
tice, however, it is often necessary to process large amounts of data.

Ability to process different types of attributes (versatility): Many algorithms are
designed to process only numeric data. However, the processing of data of another
type is often required in practice, e.g., binary data or ordinary data.

Creating clusters of arbitrary shape: The most common clustering methods create
spherical shape clusters based on the Euclidean or Manhattan distance function.
Clusters of arbitrary shape could better match the sought classes.

Minimum knowledge of the problem when determining parameters: Numerous
methods require the determination of input conditions (e.g. the required number of
clusters). These parameters are often difficult to determine and can have a major
impact on the quality of the clusters found.

Ability to deal with data containing noise: Incorrect, unknown, or missing data can
significantly reduce the clusters’ quality. Hence, methods that are resistant to noise
are needed.

Incremental (online) clustering: Some algorithms cannot incrementally process new
data, and clustering has to be done repeatedly.

Input record order insensitivity: Some algorithms may find different clusters with dif-
ferent input data arrangements.

Ability to process high dimensional data: Conventional clustering methods process
low dimensional data well (data with 2–3 items). Significant algorithms are those
that can process even data items with a larger number of attributes.

Constraint-based clustering capability: The task is to find data classes that meet the
required constraints.
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Explainable and usable clusters: The resulting clusters must be interpretable, compre-
hensible, and usable.

The partitioning criteria: In some methods, all clusters are at the same level without
any hierarchy (flat clustering). Other methods can form clusters in a certain hierarchy,
where each level can have a different semantic meaning (hierarchical clustering).

Separation of clusters: Some methods divide objects so that each object belongs to ex-
actly one cluster (hard clustering). Alternatively, an object can be assigned to multiple
clusters (soft clustering).

Similarity measure: The similarity between objects can be determined based on the
objects’ distance, for example, using the Euclidean distance. Another way is to define
similarity by connectivity based on density or contiguity of objects, which do not
necessarily rely on the distance between objects.

Clustering space: Many clustering methods search for clusters throughout the space.
In high-dimensional data, this can be a problem because they may contain some
irrelevant attributes.

2.3 Types and Algorithms
It is not generally possible to determine the most appropriate method. The choice of
a particular method depends on the type of data analysed and the specific purpose of the
application. Sometimes several different methods are used at the same time, and their
results are then compared.

2.3.1 Partitioning Methods

These methods divide 𝑛 objects into 𝑘 classes where 𝑘 ≤ 𝑛. Each of the classes must contain
at least one object, and in most methods, each object belongs to exactly one class (hard).
All clusters are at the same level. The disadvantage is that these methods must specify the
number of classes into which the objects are to be divided.

Most partitioning methods are based on object distances. In the initial step, an object
is randomly selected to represent each class. Other objects are divided into these classes
based on similarity to these class representatives. Subsequently, the most suitable class
representatives are iteratively searched for. The objects are moved between the classes so
that the similarity of objects of one class is as large as possible, and the similarity of objects
from different classes is as small as possible. A mean or medoid can represent the cluster.
The K-means and K-medoids heuristics are used to achieve an optimal division of objects
into classes. Using these heuristics, clusters of circular shapes are created.

Methods using the class representatives can also be called Prototype-based methods [25].

K-means Represents a class using a fictitious central point whose attributes are deter-
mined as the mean value of object attribute values. Objects are divided into these classes
based on the distance from the centre points. The algorithm has linear complexity and
works well as long as the data forms well-separated compact clusters. The disadvantage is
that the method does not make it possible to find clusters of non-convex shapes and various
sizes. It is also sensitive to noise and outliers in the data, which can significantly distort
the resulting cluster distribution.
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Bisecting K-means Unlike K-means, it starts with all objects in one cluster. It then
proceeds by dividing the largest cluster into two smaller ones using K-means and thus
continues until the required number of clusters is reached. Unlike K-means, it tends to
form clusters of similar size.

K-medoids In contrast to the K-means method, it makes it possible to reduce the effect
of outliers. The method does not use a fictitious centre point, but each class is represented
by an object located closest to the middle of the class. It is stronger because it is less
affected by noise and outliers in the data, but it is more computationally intensive.

2.3.2 Hierarchical-Based Methods

These methods create a hierarchical decomposition of a given set of objects – a cluster of
trees is created. Depending on how the decomposition takes place, they are divided into
agglomerative and divisive.

• Agglomerative methods (bottom-up) first place each object in its own class. Subse-
quently, the most similar classes are merged until all classes are combined into one or
until the required level of aggregation is reached.

• Divisive methods (top-down) first place all objects in one class. Subsequently, the
classes are divided into smaller ones until each object is in its own class or until the
required level is reached.

Hierarchical methods can be distance-based, density-based, or continuity-based. The disad-
vantages of the methods are the impossibility of going back one step (e.g. merging divided
classes backwards) and quadratic complexity.

A bad decision, when merging or splitting, can lead to low-quality clusters. A possible
improvement is to combine hierarchical clustering with another technique. This method is
called multi-phase clustering, and its representatives are BIRCH and Chameleon.

Hierarchical methods can be further categorised into algorithmic, probabilistic, and
Bayesian.

• Algomerative, divisive, and multi-phase are algorithmic, i.e., they consider the data
to be deterministic, and they calculate their distance deterministically.

• Probabilistic methods use probabilistic models to capture clusters and evaluate their
quality based on a fitness function.

• Bayesian methods return a group of clustering structures and their probabilities in-
stead of a single clustering result.

AGNES - AGglomerative NESting Each object is initially placed in its own class.
Subsequently, the most similar classes are merged in two until all classes are combined into
one or until the required level of aggregation is reached.

DIANA - DIvisive ANAlysis First, all objects are placed in one class. The classes are
then gradually divided into smaller ones until each object is in its own class or until the
desired level is reached.
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BIRCH - Balanced Iterative Reducing and Clustering using Hierarchies It
belongs to a group of multi-phase methods and is designed for a large number of data.
It works on numerical data in two phases. The first phase uses hierarchical clustering,
and the second phase uses other methods, e.g. iterative partitioning. The advantage over
agglomerative clustering is the improvement of scalability and the inability to revert the
executed steps.

It uses the so-called clustering feature CF to represent the cluster, and the cluster
hierarchy is represented by the clustering feature tree CF-tree. CF summarises information
about objects in the cluster. CF is defined as 𝐶𝐹 = (𝑛,𝐿𝑆, 𝑆𝑆), where 𝐿𝑆 is the linear
sum of 𝑛 points and 𝑆𝑆 is the square sum of points.

In the first phase of clustering, the database is scanned, and a 𝐶𝐹 tree is created. In the
second phase, the selected clustering algorithm is used to cluster the 𝐶𝐹 tree leaf nodes.
This achieves the reduction of remote clusters and the transfer of objects to larger clusters.

Chameleon Chameleon is a multi-phase clustering algorithm. The first phase generates
a nearest neighbour graph (using a graph distribution algorithm) that contains links only
between the point and its nearest neighbours. The second phase uses the algorithm of ag-
glomerative hierarchical clustering to find real clusters by merging them into subgroups [7].

2.3.3 Density-Based Methods

Clusters are considered areas with a high density of objects separated by areas with a low
density of objects. Objects in a low-density space are considered noise. Using these methods,
it is possible to find clusters of different shapes and deal with noise (remote values do not
belong to any cluster).

DBSCAN - Density-Based Spatial Clustering of Applications with Noise The
algorithm combines clusters into areas with a sufficiently large density of objects. What
density is large enough is determined by the parameter 𝜀, which indicates the maximum
distance between two objects in the cluster, and the parameter 𝑚𝑖𝑛_𝑝𝑡𝑠, which indicates
the minimum number of objects in the cluster. The neighbourhood of an object with radius
𝜀 is called 𝜀-neighbourhood. The problem with this algorithm is the determination of the
input parameters. The principle of operation is as follows: the method first checks the
𝜀-neighbourhood of each object. If the 𝜀-neighbourhood of one of the objects contains at
least 𝑚𝑖𝑛_𝑝𝑡𝑠 objects, a new cluster is created, and its core is this object. Subsequently,
iteratively searched for objects located in the 𝜀-vicinity of the cluster cores, and clustering
can occur. The process is terminated if no more points can be assigned to any of the noises.

DENCLUE - DENsity-based CLUstEring The method is based on the use of the
density distribution function. It is based on three ideas:

• a mathematical function can model the influence of an object in its vicinity

• the total function of data space density can be modeled as the sum of individual
functions of the influence of all objects in the data space

• clusters are places where the local maxima of the total density function are located
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The influence function can be any function derived from the distance of two objects,
e.g. Euclidean distance from which the rectangular function of influence can be derived:

𝑓𝑠𝑞𝑢𝑎𝑟𝑒 =

{︃
0 for 𝑑(𝑥, 𝑦) > 𝛿

1 for 𝑑(𝑥, 𝑦) ≤ 𝛿

where 𝛿 is the maximum distance between two points. The total density function at point
𝑥 is given by the sum of the functions of all remaining points’ influence on point 𝑥. Places,
where the overall density function reaches the local maximum, represent the clusters’ centres
found. The main advantages include that the method makes it possible to describe clusters
of different shapes mathematically on better level, even for high-dimensional data, and deal
well with noise. The problem is setting the parameter 𝛿.

OPTICS - Ordering Points To Identify the Clustering Structure The principle
is similar to DBSCAN. Unlike other algorithms, however, it tries to eliminate the problem
of difficult selection of initial parameters, which greatly influences the resulting shrinkage.
The output of OPTICS is not clustering, but cluster ordering, a linear list of all objects
representing the density-based clustering structure of data. Objects in clusters with a higher
density are closer together in the list. This list can obtain clustering information such as
cluster centers, but it also represents the cluster visualisation itself.

2.3.4 Grid-Based Methods

The methods use a multilevel grid data structure. Space is divided by a grid into a finite
number of cells. All clustering operations are performed over this grid. The main advan-
tage is the low time required, which depended only on the number of cells. Examples of
algorithms not described below are STING and CLIQUE.

WaveCluster The method uses wave transformation to transform the data space. It
efficiently processes large data sets, allows you to find clusters of various shapes, and can
deal with outliers. The resulting clusters are independent of the order of processing objects
and do not require input parameters. The procedure for this method is as follows: The data
space is first divided by a grid. Each cell then summarises information about the objects
that fall into it. Subsequently, a multilevel wave transformation is applied to the values
in the grids. Wave transformation emphasises areas where points cluster and conversely
suppresses information beyond the clusters. This highlights clusters and removes outliers.

2.3.5 Model-Based Methods

The methods try to find clusters that would correspond as closely as possible to some
mathematical model. The data are most often generated according to one of the complex
probability distribution functions.

EM - Expectation–Maximization It is assumed that a parametrised probability dis-
tribution function can represent each cluster. Based on these probabilistic distribution
functions, it is possible to create a density model and then perform clustering according to
it. The problem is to find such parameters of the distribution function that the probability
of distribution corresponds as much as possible to the data set. The EM method makes
it possible to find these parameters. The EM method represents an extension of K-means,
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but there are no fixed boundaries between clusters. For each cluster and object, the prob-
ability that the object belongs to the cluster in which it is located is determined. These
probabilities are then used to calculate the parameters of the new points representing the
clusters.

Conceptual clustering It tries to find a classification scheme for objects and, in con-
trast to common clustering methods, a characteristic description for each cluster. The
best-known method is COBWEB, which uses a classification tree, with each node related
to a concept and containing a probabilistic description of that concept. A probability
description summarises the objects classified under this node.

2.3.6 High-Dimensional Methods

The problem with clustering high-dimensional data is that only a small number of dimen-
sions (attributes) are relevant to clustering. Data in other dimensions can cause too much
noise, and with the increasing number of dimensions, more data is scattered. The following
methods address these issues:

Feature transformation method: transforms data into a space with fewer dimensions
while maintaining relative distances. Attributes of attributes (features) are combined. The
features created in this way are difficult to interpret, which reduces the usefulness of the
results. The method is suitable for datasets where most attributes are relevant.

Attribute selection method: searches for relevant attributes and removes irrelevant.
Relevance is determined using various criteria. Supervised learning is most often used,
where the most relevant objects are selected according to the evaluation of individual classes
of objects.

2.4 State of the Art of Malware Clustering
This section describes the state of the art of malware clustering approaches. They often aim
to find new attributes suitable for clustering or combine the standard clustering methods
mentioned in the previous section.

Bayer et al. [5] propose a new approach for clustering similar samples. They use dy-
namic analysis to create behavioural profiles, which have to be transformed into feature
sets. Before clustering, they discard all features of unique samples among the whole set
because unique features would not participate in finding similar samples. The feature set is
suitable for Locally Sensitive Hashing (LSH), which is then used to compute single-linkage
hierarchical clustering.

Perdisci et al. [22] present a novel malware clustering system aimed at network-level
behaviour. It consists of three phases: (1) Coarse-grained Clustering using statistical fea-
tures, e.g. the total number of HTTP requests, (2) Fine-grained Clustering, which further
splits relative large clusters into smaller ones using structural similarities, which allows sep-
arating malware with similar statistic but different structures, and (3) Cluster Merging of
very similar clusters, to derive more generic behaviour models.

Pitolli et al. [23] propose a novel solution for identifying malware strains using the
BIRCH algorithm using both static and dynamic features. Feature vector consists of 241
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numeric features (strings are converted to numbers via LSH). To speed up computation, all
shared features among at least 80% of samples are considered useless and removed.

Asquith [4] proposes the use of a data structure called an aggregation overlay graph for
clustering malware data. They consider a bipartite graph with samples as nodes on one
side and their features on the other side. Malware variants often share a certain subset
of features forming a complete subgraph. Compression of bipartite graphs with complete
subgraphs can be used for finding variants of the same strain, but samples can belong to
more strains. The method is not restricted to any type of data and can use both static and
dynamic features.

Xin Hu et al. [14] present a novel scalable framework called MutantX-S that can effi-
ciently cluster samples based on code instruction sequences. All statically analysed sam-
ples are processed in the three steps: (1) Instruction encoding for converting instruction
into a sequence that is resilient to low-level mutations, (2) N-gram analysis to construct
a feature vector, and (3) Hashing Trick for compressing the feature vectors to improve
similarity speed computation. Finally, prototype-based clustering is applied to the feature
vector, producing a set of clusters. The prototypes are initially selected randomly, and
then samples with the largest distance to the existent prototype are selected each iteration.
Using prototypes allows considering only a small subset of samples during the clustering of
samples.

Shuwei et al. [27] use the clustering algorithm based on Shared Nearest Neighbour (SNN)
combined with DBSCAN. They use the frequency of the system calls as the feature vector for
clustering. Clustering is divided into four steps: (1) calculate SNN density of each sample,
(2) find core samples that have density above the given threshold, (3) merge similar core
samples, and (4) cluster samples into existing clusters if they are similar enough. The rest
of the samples is considered to be noise.

Zhang et al. [33] combine multiple features from both static and dynamic analysis.
Their approach consists of several steps: (1) extraction of multiple categories of static and
dynamic information, (2) base clustering using different clustering algorithm (K-means or
hierarchical algorithms) for each category, and (3) combining the results of base clustering
to get the best ensemble results.

Ye et al. [30] developed an Automatic Malware Categorisation System (AMCS). It uses
a cluster ensemble by aggregating the clustering results from partitional and hierarchical
clustering methods, like K-medoids. They decided to use two static features, instruction
frequency and function-based instruction sequences, for representing PE samples. Besides
that, it also supports sample-level constraints by specifying pairs of samples that should or
should not be in the same cluster.

Xi Hu et al. [13] propose a novel clustering framework called DUET. DUET uses a clus-
tering ensemble to combine several clustering results into a single one systematically. The
base clustering algorithms can use static or dynamic features. It also uses quality metrics
to score clusters, which helps the ensemble algorithm with the decision. Using different
algorithms and static and dynamic analysis leads to better results because of combining
the strength of individual clustering and both types of analysis.
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Chapter 3

Malicious Software

The chapter is based on [8, 26,29].
Malware is a program or a piece of code created on the purpose to achieve the harmful

intent of an attacker. Attacker’s intentions are gaining control over the system or gathering
user sensitive data without user permission. Based on the purpose and the spreading way,
malware can be categorised into several categories. Categories are described in Section 3.1.

There are multiple ways malware can spread: (1) Vulnerable network services can be
used to infect the system automatically over the network, (2) Drive-by downloads exploit
a web browser vulnerability, which allows the malware to fetch itself from the web and
execute it on the user machine. The user needs to visit the infected page at first, which
can be achieved for example by spam emails, (3) Social engineering is a technique that
lures a user into directly executing malware on its computer. It is often hidden behind an
innocent and credible occasion like installing a missing video codec or opening an image.

The major defence to protect against malware is to use anti-malware software. Concur-
rently with the anti-malware companies constantly improving malware detection, malware
creators also develop more evasion techniques to prevent malware analysis:

• Encryption of malware and providing the decryption algorithm and the key to decrypt
malicious components

• Packing is a technique of compressing an executable file. The file needs to be unpacked
to reveal a original binary structure

• Obfuscation aims to hide the program logic by code transformation, e.g., adding
garbage code or unnecessary jumps.

• Polymorphic malware is a malware, which uses encryption and creates different look-
ing replication each time, leading to unlimited number of variants of the same code

• Metamorphic malware changes itself, so each instance will look different.

To detect and classify malware, static or dynamic analysis can be used. While the static
analysis incorporates all techniques that analyse software by inspecting it, the dynamic
analysis examines software behaviour by running it. Static and dynamic analysis is more
described in Section 3.2. Besides that, there is also YARA tool able to match malware
samples based on textual or binary patterns. YARA is further described in Section 3.3.
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3.1 Malware Types
Based on the different purpose and the way it spreads, malware can be categorised into
multiple types. Malware types are not mutually exclusive, i.e. malware samples may share
characteristics from multiple types. Some of the malware types are described in this section.

Virus When executed by an already infected “host” program, a virus will infect files with
the same or evolved copy of itself. By infecting files shared on a server, it can also spread
to other computers.

Worm Unlike a virus, a worm does not need a “host” program. It is a self-replicating
program able to spread a full copy of itself across the network.

Trojan Horse A trojan is a software, which pretends to be useful but behaves maliciously
in the background. It can distinguish itself as any legitimate program, and once installed,
its malicious part can download other malware or anything else an attacker wants. Because
of this, the standard way it spread is using social engineering.

Spyware It is malware, which silently spies on users. It can collect sensitive data, for
example, track user activities, including its browser history, and then sell them to third
parties.

Bot A botnet is a network of infected computers called bots under the control of an
attacker. They typically spread by exploiting software vulnerabilities or using social en-
gineering. Botnets are commonly used to send spam emails or in launching Distributed
Denial of Service attacks (DDoS).

Adware The main purpose of adware is downloading or displaying advertisements and
thus getting revenue to the attacker.

Rootkit A rootkit is a type of malware operating on different system levels designed
to hide certain information from a user. It can hide processes or files by manipulating
information. Hence it is often used by other malware to hide it.

Ransomware It aims to encrypt all the user data and ask him to pay money as a ransom
the get the decryption key allowing him to get the data back. The machine infected by ran-
somware is unusable, and the information about the payment usually appears as a desktop
image.

3.2 Analysis
Both static and dynamic analysis has several advantages and drawbacks. Thus it is sug-
gested to use them altogether. Combining static and dynamic analysis is called Hybrid
analysis.
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3.2.1 Static Analysis

Static analysis investigates samples without executing them. The sample often needs to be
preprocessed first to overcome evasion techniques, e.g., decompress/unpack sample. Several
tools can be used to modify samples into a readable format or get a different kind of
information. For example, in static analysis of Windows PE executable files, there are tools
for decompression, unpacking, disassembling, memory dumping, and the following data
extraction.

Some static features are common for all or a part of malware samples (e.g. binaries),
and some are format-specific. Common features include, for example, file size, file name,
and included strings. Common features specific to binaries are, for example, file resources,
imports, exports, and entry point address. There are also file-type-specific features. For
example, rich header is specific for Windows PE binaries, Linux ELF binaries do no have
such a feature.

Even static analysis suffers from evasion techniques, compared to dynamic analysis, its
advantage is that it can explore all possible execution paths, which dynamic analysis cannot
do. Call graphs can give an analyst a good overview of what functions are called and what
the flow of the program would be. Also, the analyser’s machine cannot be infected when
using static analysis.

3.2.2 Dynamic Analysis

The dynamic analysis uses debuggers (e.g. GDB1), sandboxes (e.g. Cuckoo2), or other
techniques to observe malware behaviour.

Debuggers are used for analysis on an instruction level. However, malware can easily
detect the presence of a debugger by simply watching changes of itself that are necessary
for debugging. Newer ways of debugging support stealth breakpoints or use hardware
virtualisations to remain invisible.

Sandboxes are tools that run the software in a self-governing virtual computerised tech-
nology, so they can pretend to be a potential victim and then monitor all software activities,
e.g., file modifications, system calls, or registry modifications. Sandboxes separate virtual
machine from the actual machine and the same for the network, making it safer easier to
distinguish malware actions [16].

Dynamic analysis is especially useful in analysing malware using evasion techniques
like packing because, at some point of analysis, malware will unpack itself and reveal the
actual code. The problem of dynamic analysis is that malware can depend on some special
conditions (e.g. particular time), and thus its malicious behaviour may stay hidden. Besides
that, it requires more resources and more time compared to static analysis.

3.3 YARA
YARA [2] is a tool aimed identify and classify malware samples based on the signature
description in the YARA language. It is widely used by malware analysts, creating so-
called YARA rules. These rules are used for matching malware samples based on textual
or binary patterns (there is no need for any external static or dynamic analysis).

1https://www.gnu.org/software/gdb/
2https://cuckoosandbox.org/
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3.3.1 YARA Language

YARA is also a language for writing YARA rules. A YARA rule consists of three sec-
tions: mandatory condition, optional strings, and optional metadata. Condition determines
whether a sample matches the YARA rule or not. If the rule wants to refer to a string,
the string needs to be put in the strings part. The metadata section provides additional
information about the rule alongside its name. An example of a YARA rule describing PDF
magic bytes can be seen in Figure 3.1.

rule PDF
{

meta:
file_type = "PDF"
version = 1

strings:
$pdf_magic = { 25 50 44 46 2D }

condition:
$pdf_magic at 0

}

Figure 3.1: YARA rule matching PDF magic bytes

3.3.2 YARA Library

YARA as a tool is just a wrapper around libyara library, which is used to search for
signatures written in YARA in a given file. The output of the YARA scan is a list of
YARA rules matching the specific file. Because of searching files for a string occurrence, it
does not really matter the type of file. This type of searching lack context.

YARA modules are extensions providing additional context by parsing the file. An
example of such a module is PE module exposing most of the fields present in a PE header
(e.g. pe.number_of_sections). Besides that, there are also modules providing general
functions like math, hash, or magic.

Another example of a non standard module is cuckoo module. It is not a standard
module because it does not parse samples itself. Rather it parse JSON output of Cuckoo
sandbox. In this way, YARA rules can also include dynamic signatures.
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Chapter 4

Clusty

This chapter is based on [19].
The Avast company receives up to several millions of new samples every day. Each

sample then needs to be analysed and classified to know whether it is malware or cleanware.
In the case of malware, it is also needed to determine type and strain. Malware analysts
are not capable of processing samples one by one. It is not even effective for fewer samples
as analysts could discover similar samples over and over again. The better solution is to
automatically group samples into clusters according to their similarity. This is what Clusty
does.

Clusty is an internal tool for automatic analysis and clustering of newly arrived samples.
It consumes events about new samples, analyses them, and cluster them into a best-suited
cluster. Each cluster is based on a single attribute and can have several attributes sharing
the same value among all its samples. These attributes are valuable as they characterise the
group. Clusters are then classified either automatically by one of the available classifiers
or manually by malware analysts. Clusty supports binaries (e.g., PE, ELF, Mach-O),
documents (e.g., PDF, Office), text files (e.g., HTML, email, various scripts), and others.
It uses a wide range of properties like static properties, dynamic properties, YARA rules,
or antivirus detections to cluster samples.

At this time, the second version of Clusty is already in use. The biggest difference
between the first and the second version is the clustering part. Apart from clustering, they
are very similar. Because of that, everything described in this chapter (except Section 4.2)
is based on the description of the second version but could also be largely implied to the
first version as well. Clusty’s architecture is described in Section 4.1. Clustering for both
versions is described in sections 4.2 and 4.3, and the description of a cluster shown on the
web is described in Section 4.4. An example of a JSON representation of the analysed
sample alongside the description is described in Section 4.5.

4.1 Architecture
Clusty can run in two modes. The first mode is called continuous (or production because
Clusty v1 was not actually continuous) and is used in the production, where Clusty contin-
uously analyses and cluster newly arrived samples. The second mode is called ad-hoc. This
mode is used for development, where the user can cluster samples in a given directory.

Clusty can be divided into three parts: analysis, clustering, and web. This work is
focused on the clustering part only.
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Analysis

The analysis part is written in Python v3 and is responsible for consuming events, identi-
fying, and analysing samples. It uses RabbitMQ1 message broker to consume events (e.g.
arrival of the new sample) and MongoDB2 to store analysed samples in a JSON format.
Identification and analysis are performed by various internal or external tools, depending
on the sample’s category. After identification and analysis of the sample, the sample is
stored in the database and prepared for clustering. To speed up clustering, a sample can
be clustered based on static attributes at first, and reclustered by all attributes once the
longer-lasting dynamic analysis results are available.

Clustering

The clustering part is written in C++ because of its huge memory and CPU utilisation. It
is responsible for clustering samples, which are already analysed and stored in the database.
This part is more described in sections 4.2 and 4.3 for each version of Clusty.

Web

The web part’s purpose is to provide clustering results in interpretable form. It provides
API to get results (e.g. samples in a specific cluster) in a machine-readable form and
a web interface to get clustering results in a more human-readable form. This part is what
analysts use. Section 4.4 describes clusters as can be seen on the web.

4.2 Clusty v1 Clustering
Description of Clusty v1 is based on [24].

After every sample is analysed and stored in the database, the clustering part begins.
The information used in clustering is compressed (typically by hashing) and clustered using
the DBSCAN algorithm separately per category. It divides samples into clusters with
a specific minimum size based on the distance. The clustering runs several times, every
time using the next attribute in attributes hierarchy, clustering all remaining samples, i.e.,
samples that were not clustered to any cluster by one of the previous attributes. The
attributes and their order were determined on the basis of experiments. The distance is
computed as equality or similarity of attributes, depending on the specific attribute. At
the end of clustering, common attributes for each cluster are computed.

In production mode, samples are analysed during the day as they arrive. The clustering
itself runs only once per day at its end. Only samples from the day are clustered. There is
no continuity to any previous day.

Shortcomings

This approach has several shortcomings, mostly because of the selected clustering approach.
Because all samples must be present when clustering begins, to cluster new samples, clus-
tering has to run each day and cannot use already existing clusters. This forces analysts
to review clusters over and over again. According to internal Avast documentation, even in

1https://www.rabbitmq.com/
2https://www.mongodb.com/
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the case of adding continuous mode, the clusters would remain hardly explainable. That
means it is hard to say why a certain cluster was created.

4.3 Clusty v2 Clustering
Unlike Clusty v1, Clusty v2 does not use DBSCAN to cluster samples. It uses the Clusty-
unique concept instead. Each category of samples (e.g., PE, HTML) has its own clustering
methods ordered by priority. For example, the method based on YARA rules is higher than
the method based on the PDB path for the PE category. The clustering method always
represents a single attribute. Clusty checks for each method in the given category during
clustering whether the sample satisfies all conditions required by the method (e.g. minimal
length of the list). The first method which satisfies those conditions is used. If a cluster
for the given method, category, and value exists, the sample is placed in that cluster.
Otherwise, a new cluster is created, and the sample is added to that cluster. Methods for
each category are determined on the basis of experiments. Some methods can be used for
each sample regarding its category, e.g. YARA rules. The last method of each category is
based on ssdeep3 hash similarity with a specific threshold. In the case none of the methods
could be applied, the sample is marked as unclustered.

If a cluster is incorrect (e.g. containing both clean and malicious samples), it can be
blacklisted and reclustered. This means that since then, a cluster with the same method,
category, and value will not be created anymore. The sample will be clustered on the basis
of another method in the hierarchy.

In continuous mode, samples are both analysed and clustered as they arrive. It is not
needed to cluster samples repeatedly each day, and samples can be clustered into existing
clusters instead. Another benefit is the ability to recluster samples. For example, that
means that already clustered samples can be reclustered when attributes from the dynamic
analysis have arrived. It can also be used on a whole cluster, for example, reclustering of
tiny clusters. In that case, the method the cluster was created by will not be used during
reclustering.

Shortcomings

Newer version v2 overcame several shortcomings of version v1. It supports continuous
clustering now. The shortcomings of the current version concern the used clustering method
and the architecture.

The clustering method uses a manually created list of criteria, which is sequentially
gone through, and the first matching condition is used. The condition is often based on
a presence of a specific attribute in a sample, and the value used for clustering is the
attribute‘s value. Since the clusters are created based on a single criterion (attribute), the
method is prone to adversarial attacks. For example, if the attribute’s value is randomly
generated value, all such samples will be placed into a new cluster and stay alone. On
the other hand, clustering based on a value that is common for both clean and malware
samples would lead to clusters having both malware and clean samples (further as mixed
clusters). Nor creation of tiny clusters neither creation of mixed clusters is desirable. Using
multi-criteria clustering can prevent the creation of such clusters.

The most notable shortcoming of architecture is pure vertical scalability. Clusty is
not able to run in multiple instances of clustering within the same clustering result. This

3https://dfir.science/2017/07/How-To-Fuzzy-Hashing-with-SSDEEP-(similarity-matching).html
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inability also leads to a single point of failure. Multiple instances running at the same time
would cover outages and ensure high availability.

4.4 Cluster Description
Clustering results can be shown on the web. An example of such a cluster can be seen
in Figure 4.1. Each cluster consists of several parts: header (top grey row), shared prop-
erties (below header), detection statistics (below shared properties), classification (below
detection statistics), and additional info (bottom row).

Figure 4.1: Cluster created on the basis of Import table hash manually classified as malware-
dropper-Gepsys

Header

The header contains an overview of the cluster. There is a category (PE), order number
(10), number of samples (1 784 274), the sum of prevalences (0), and the criterion the cluster
was created by. In this case, the cluster was created on the basis of a single attribute Import
table hash, which is a hash of the Import table of PE samples. Prevalence means the sum
of Avast users that have seen a sample from the cluster, i.e. 0 means no user has seen any
sample. The next line contains a cluster’s ID and the date of creation.

Shared properties

Shared properties are properties that are shared among all samples in the cluster. The
property the cluster was created by does not need to be necessary the only shared property.
The more properties are common, the more similar samples should be. In this example,
there are five shared properties. The lists are special parameters where they do not need
to be 100% equal to be shown.
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Detection statistics

Detection statistics summarise what AVs think about samples in the cluster.

Classification

The classification consists of severity (e.g., malware, clean, PUP), type (e.g., ransomware,
worm), and strain (name of the malware). The rest is additional info like the author of the
classification, classification’s confidence (100% because of manual classification), and the
date of classification. The classification can change over time. Its history of changes is also
available.

4.5 Sample Description
This section will describe the process from the arrival of a sample to its clustering and
introduce a sample to understand better what is being clustered concerning malware clus-
tering.

Names file and sample are interchangeable across this work, but this section establishes
a different meaning for them applying to this section only. The file is supposed to be an
input file of any type sent for clustering, and the sample is referred to as a JSON document
collecting information about the input file obtained from various sources.

{
"category": "pe",
"sha256_hash": "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855",
"yara_hits": ["virus_known_sequences"],
"architecture": "x86",
"entry_point_address": "0x4011cb",
"rich_header": "000c1ac500ff090100092f690000c000000d1fe000000003",
"sections": [".code", ".text", ".data", ".rdata", ".rsrc"],
"import_table_hash": "87bed5a7cba00c7e1f4015f1bdae2183",
"uncommon_mutexes": ["adxp"],
"uncommon_touched_files": ["win32.exe"],
"ssdeep_hash": "196608:puhNhimNau7IqKpSq8Us++lflGyUVwBifqbBysxpwoOWW:8baudKpSq8Z+
oflGfwgfWysPDW",
"path": "/path/to/sample.exe",
"prevalence": 0,
"size": 100000,

}

Figure 4.2: Example of reduced PE sample

After a file is sent for analysis and clustering in Clusty, it is first needed to identify its
file-type. If Clusty supports the file-type, it will be stored as category file in a sample. The
category will be set to generic otherwise. Alongside category, there are generic attributes
that can be retrieved for any category, e.g., path, ssdeep_hash, size, and sha256_hash.
SHA-256 hash is used as a file identifier. If two files have equal hashes, they are considered
to be the same file. Another attribute common for all categories is prevalence, but it is
not based on file content rather on the occurrence of the file on Avast’s user devices.
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If the category matches one of the categories supported by Clusty, the file is sent for
static analysis and dynamic analysis (if possible). The results of both analyses are then
filtered in the meaning of attributes as well as their values. Not all attributes will be stored
in the sample, and not all attributes are valuable. Besides analysis, the file is also sent for
YARA matching. All matched rules are then stored in yara_hits field.

Figure 4.2 shows a PE sample having a few attributes from each group mentioned
above. We can see that the analysed file is PE x86 executable named example.exe. Its size
is 100 kB, and it was not seen by any Avast user yet. Further, it creates a mutex named
adxp, touches a file win32.exe, and matches virus_known_sequences YARA rule.

Observing the example, we can see attributes can have various types of values, e.g., a list
of strings, strings, bytes, and integers. In the case of a string, it can contain anything from
meaningful words through randomly generated strings to hashes. This representation is
not usable for clustering methods requiring numeric values. Usual techniques to transform
data into numbers rely on a finite number of values the attribute can have. One of the
techniques to transform attributes into numeric representation regardless of their value is
using LSH. It is used by Pitolli et al. in [23], for example.
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Chapter 5

Design

The chapter presents a design of the clustering part of the new version of Clusty. The aim
is to overcome shortcomings from the current version (e.g. scalability) while keeping its
benefits (e.g. online clustering). All expectations from the new version are described in
Section 5.1. The design and the expectations are split into two individual parts. The first
part designs a scalable, high available, and fast tool providing an interface for clustering of
various file-types using various methods for continuous clustering. It should be mostly inde-
pendent of the chosen clustering method or methods. An architecture and chosen platforms
are described in Section 5.2. The second part deals with a selection of usable clustering
methods. Existing clustering methods are reviewed, and new methods are described in
Section 5.3.

5.1 Expectations
Below is the list of expectations based on [19]. They do not consider clustering only but
everything related to the clustering part.

Multi-criteria clustering. Clusty v2 uses a single criterion to cluster samples. It was
shown to be very restrictive and easily susceptible to forgery. Furthermore, the attributes
and their priority have to be selected manually based on experiments. It is described in
Section 4.3. The new version should support multi-criteria clustering.

Homogeneous clusters. The resulting clusters should not mix clean and malware sam-
ples. It means that clusters with classification clean will never contain any sample with
classification malware and vice versa. Also, types and strains should be shared among all
samples in the cluster if possible. Mixed clusters cause several problems. Firstly, it can
cause false positives or false negatives if it is mixed just a little. Secondly, it is harder
to classify cluster properly, which leads to classification with lower confidence making the
cluster unusable (they are marked with classification unknown in the current Clusty) in the
case of a high level of the mixture.

Performance. The new version should be able to deal with millions of samples as the
current one. Both program architecture and clustering method need to be considered
properly.
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Scalability. It should be scalable according to the number of samples arriving at the
moment. For example, it should allow us to run multiple instances or scale the number of
processes during run-time.

High availability. It means that there should not be a single point of failure in a whole
architecture. All used tools and databases have to support HA, e.g. allow running in clus-
ters. High availability in the new version should be achieved by running multiple instances
in parallel, even on multiple servers.

Online and ad-hoc. Both modes, online and ad-hoc, should be supported as described
in Section 4.1. It means to support an ability to run as a daemon in an infinite loop
continuously clustering all incoming samples, besides the ability to run on a known set of
samples finishing after clustering all of them.

Reclustering. It should be able to recluster samples and clusters. For example, when
information about the sample has changed, the sample can be reclustered according to
the new information. It can be considered as the third clustering mode, where clustered
samples are moved into another cluster if any better cluster is found. If samples are not
changed since the last clustering, nothing should happen.

Blacklisting. When the cluster has poor quality (e.g. it contains samples that should
not be in a single cluster), there should be a possibility to blacklist this cluster. In that
case, all samples from the cluster will be reclustered, and the cluster will not be created
anymore. The clustering method should be able to support such behaviour.

Unlimited cluster size. The current version of Clusty has two categories of clusters:
tiny and regular. Tiny clusters are clusters with one to four samples. Regular clusters
contain at least five samples. Only regular clusters are classified and showed on the web.
The new version should not use this separation and should treat all clusters the same.

Explainability. It should be clear to see why the cluster was created (e.g. it has
rich_header attribute with value 00131f8e0000000a0000000000000001) and what else
samples in the cluster have in common. These values can be useful for analysts to see
characteristics of malware or to find similarities among clusters.

Universality. Universality means solution independent of category and extendable to
more categories (ELF, PDF, etc.). Therefore, this work will cover PE category only. It
is the most prevalent category among malware. The solution, including chosen clustering
method, has to be easily extensible to support clustering of other categories.

5.2 Architecture
The architecture tries to fulfil all requirements listed in the previous section 5.1, while trying
newer technologies than the current version.
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Database

The database used in Clusty is NoSQL MongoDB. ArangoDB1 was selected as a new
database. It is a distributed multi-model database, which means data can be stored as
key-value pairs, documents, or graphs. All of this can be accessed by just one query
language (AQL - ArangoDB Query Language). Its main features are multi model using
a single language, multi-architecture - single instance or cluster or mix, sharding, vertical
and horizontal scalability, strong data consistency, and fault tolerance [10]. Also, according
to the open-source performance benchmarks [28], it performs better than MongoDB in all
tests except memory consumption. It meets all the requirements.

The reason for looking after a multi-model database was to leave more options open
such as using a graph database. Since the main aim of the database was to store sam-
ples as unstructured objects, either several databases or a multi-model database could be
used. According to the paper [10], studying and comparing the five most popular graph
databases (AllegroGraph, ArangoDB, InfiniteGraph, Neo4J, and OrientDB), ArangoDB
was considered the best multi-model database regarding its features.

Message broker

RabbitMQ message broker was chosen to distribute work evenly among all running work-
ers. As RabbitMQ’s main page says “RabbitMQ is the most widely deployed open-source
message broker” [1]. Besides that, it is a widely used message broker in Avast, connecting
many services including Clusty.

It is an open-source message broker implementing the AMQP standard. Load balancing
allowing scalability and fault-tolerance by running in HA clusters are only some of its
features [15]. The mechanisms it supports allows achieving all requirements.

5.2.1 Structure

The structure of the program can be seen in Figure 5.1. It consists of (1) ArangoDB server
storing all samples, clusters and other data related to clustering and synchronisation, (2)
RabbitMQ server distributing hashes of samples ready to be clustered, (3) the master pro-
cess spawning and managing N workers, (4) and N workers which independently consume
events and cluster samples. The master process can also communicate with the message
broker, depending on the current mode. Note that only the master process in the first
instance can communicate with the message broker. The master process in other instances,
if there are any, do not need to communicate since there is neither publishing nor consump-
tion required. The communication between the master process and the message broker is
required on the beginning only, before running of clustering.

RabbitMQ and ArangoDB are able to run in clusters to sustain high availability. To
sustain HA of a whole application, the main role of the master process is to make sure
the specified number of workers is running. There are not many opportunities for the
master process to fail, but if it happens, there is a possibility to run several instances
simultaneously. An ability to run in multiple instances also adds support for scalability. By
running another instance, a number of active workers processing incoming samples can be
managed.

Because of support for running multiple instances at once, communication between the
master process and its workers cannot be a core for synchronisation. Two instances do

1https://www.arangodb.com/
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Figure 5.1: Design of architecture showing N instances of Rusty, each having several workers.
The master processes and workers communicate with the database and message broker. All
the master processes, except a one in the first instance, do not have to communicate with
the message broker.

no have to run even on the same server. To synchronise their state (e.g. notify about
the successful finishing of clustering) an independent application comes to play. Already
used ArangoDB can make it using a key-value model. It supports concurrent write if the
documents are different.

Analysis of files is not a part of this work, but it is a part of the clustering pipeline. It is
expected that files are analysed and stored in the database before sending an event about
the sample being ready to be clustered.

Instance

The instance is meant to be a single running application consisting of the main process
and at least one worker. If the instance is executed as a standalone application launching
clustering, the main process will work just as described down below. All other instances
joining already running clustering process need to be executed with a special flag. If not,
they will publish all hashes of samples again.

Master

The master process creates a specified number of independent workers and replenishes them
in the case of failure. There is no need to synchronise the instances in the continuous mode
because it does not make sense to show progress or finish clustering. Synchronisation in
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the other modes has to be both process-independent and server-independent. ArangoDB’s
key-value model is used for this purpose. It checks the number of samples processed by
all active workers, regardless of their master. Because the total number of samples to be
clustered is well-known, it can be compared to this total count.

In ad-hoc mode, it also opens a given file and publishes all hashes to the RabbitMQ.
This is basically the only difference between the continuous and ad-hoc mode.

In reclustering mode, it collects hashes of samples clustered in the given result and
sends them to the RabbitMQ queue. If a sample would be placed into the same cluster,
nothing will be changed. Otherwise, the sample is moved from the older into a newer cluster
(attributes in the older cluster are not recomputed). In the case of moving the last sample,
the cluster is removed. To avoid placing the sample into a deleting cluster, the cluster is
invalidated, and the clustering method is changed to a non-existing one. Then if still empty
it is removed. The rest is the same as ad-hoc mode.

Worker

Each worker is an independent RabbitMQ consumer waiting for a new hash to be clustered.
It is stopped only if its master is stopped or in the case of failure. RabbitMQ cares that
a single worker consumes a single hash, and in the case of connection loss (e.g. if a worker
has failed), it delegates the hash to another worker. Worker acknowledges the message
receiving right upon its successful clustering.

5.2.2 Database

The database has to contain several collections, some of them data-related and some
communication-related. An example of the data-related collection is sample collection,
and an example of the communication-related collection is waiting_room collection. A Di-
agram of all document, graph and key-value collections can be seen in Figure 5.2. Relation-
ships between collections, e.g. cluster contain samples, are annotated using Crow’s Foot
Notation2.

All collections except sample collection and clustering_results collection have to be
unique per clustering result. It means that when a new clustering result is being created, all
necessary collections are created as well. Similarly with deletion, when a clustering result
is being deleted, all related collections are deleted as well.

By using unique collections for each clustering result, there is no performance penalty
for having a number of different clustering results and it is easier to store and retrieve
specific data.

Cluster collection

Each cluster contains, among others, a copy of the original sample it was created from,
category, name of used clustering rule3, clustering rule related data, validity flag, and a list
of attributes all samples in the cluster have in common.

The original sample is used as a representative/base sample of the cluster. These values
can be used for cluster usability evaluation during clustering. For example, if a method is
based on rich_header and pdf_path attributes, these values are being compared with the
sample’s attributes.

2https://vertabelo.com/blog/crow-s-foot-notation/
3See Section 6.1.5 to learn about the meaning of rule.
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Figure 5.2: Database collections and their relationships

Because of the possibility to define any number of rules, a rule field stores the name
of the rule cluster was created by. Currently, documents of all categories are stored in the
same collections, this is what the category field is for. Creating a new collection for each
category is considered a possible future improvement.

The validity flag determines cluster validity during its creation period. If the cluster is
invalid, no sample can be clustered into. Rather they have to wait until its validation or
deletion. More about this can be found in Section 5.2.2.

A list of common attributes is just a list of attribute names all samples in the cluster
have in common. Values of those attributes can be found in the base sample. In the current
version of Clusty, this value has to be of length at least one meaning the only attribute the
cluster is based on is shared among all samples in the cluster.

Clustering result collection

This collection stores a list of names of all clustering results in the form of documents.
A clustering result is a group of clusters belonging to the same-named session, i.e. clustering
of a single directory in ad-hoc mode or a continuous clustering in continuous mode.

Controller collection

Synchronisation among masters is provided by watching a number of processed samples
available in this collection. Each worker increments counter in its own document every time
it clustered sample successfully. The sum of all counters of all workers is a total number
of samples clustered yet. If this number reaches a number of samples to be clustered, it
means the clustering is done. Not only are all masters are able to get the current clustering
progress, they also know the time they can finish.

Cluster blacklist collection

Blacklisted clusters are fully moved into the blacklist collection (without samples). To check
whether a cluster is blacklisted, clusters are fetched from blacklist collection, and the base
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sample from the cluster tries to place itself into them by the given rule. If the base sample
can be placed into some of the blacklisted clusters using the given rule, this cluster was
blacklisted already.

Sample blacklist collection

On the opposite of global sample collection, this collection is result-unique. When a sample
is blacklisted, it is removed from the cluster in a specified clustering result (by removing
a record from clustering collection) and inserted into sample blacklist collection. Note
the sample collection remain untouched.

Sample collection

After a sample is analysed, all gathered data are stored as a JSON document in this
collection. It is used by all clustering results. If necessary, for example, if each ad-hoc
clustering would need to have a sample analysed by the different analysers, it can be result-
unique as well as almost all other collections.

Clustering collection

A relation between sample and cluster is stored in the edge collection. An edge collection is
similar to relation tables in SQL. Each edge has mandatory fields _from and _to defining
oriented relation between documents.

Each sample can be connected up to one cluster, and each cluster has at least one
sample. The edge document contains, besides a reference to sample and cluster identifiers,
also a hash of the sample. Since the hash is considered to be unique for the sample and the
sample can belong to one cluster at max, the hash can be used as a unique index.

Waiting room collection

One of the worst-case scenarios is the simultaneous arrival of samples belonging to just
a single non-existing cluster. In this case, each worker tries to create a new cluster, leading
to several equal clusters. The waiting room is a solution to this race condition of clusters
during cluster creation.

A new key-value collection is required, where each cluster (from clusters collection)
will use its own DB key, and the value will be the key of the cluster, it is waiting for.
Clusters may un/register themselves in the waiting room to tell everyone that they are
waiting and whom they are waiting for. If an older created cluster knows that a cluster is
waiting for it, it can be successfully validated. Otherwise, it will start to wait for the newer
cluster. If the newer cluster will not wait, it will not know about the older cluster and will
therefore validate itself. This will lead for the older cluster to stop waiting and proceed
with using the newer one. If the newer cluster starts to wait as well, a deadlock occurs.
It is detected because both participants are registered in the waiting room and waiting for
themselves. In this case, the older cluster will stop waiting and validate itself. This will
lead for the older cluster to be used.
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5.3 Clustering
None of the standard algorithms mentioned in Section 2.3 satisfies all the criteria mentioned
in Section 5.1. The same applies to the state of the art approaches presented in Section 2.4.
A review of both of them can be seen in sections 5.3.1 and 5.3.2. Because of that, three
custom approaches are presented and more described in Section 5.3.3.

5.3.1 Standard Methods

Standard approaches mentioned in Section 2.3 are considered below. Requiring input pa-
rameters (such as a number of clusters), supporting offline clustering only, and hard inter-
pretability of the reason behind a cluster creation are the most common problems.

Partitioning methods An expected number of clusters is not known, and it is not
a constant. That applies not only in the case of continuous clustering but also in the
case of ad-hoc clustering. Also, the algorithms are mostly working iteratively and create
spherically shaped clusters. Lastly, it is hard to tell what the samples in the cluster have
in common.

Hierarchical methods - BIRCH BIRCH is working with numerical data only. To
use the method, the conversion of string data into numbers would have to be made. See
section 4.5 describing PE sample. The cluster created by BIRCH method is represented by
a summary (CF) and it is hardly interpretable.

Hierarchical methods - Chameleon It is a multi-phase clustering, which is not able
to process data online.

Density-based It is hard to tell why the cluster was created. It applies to all density-
based methods. Moreover, DBSCAN algorithm was already used in the first version of
Clusty, and its shortcomings are mentioned in Section 4.2.

Grid-based They use a finite number of cells, which is not desired. The problems are
similar to the ones in Partitioning algorithms.

5.3.2 State of the Art

The problems of the state of the art methods are similar to the problems with the standard
methods mentioned in Section 5.3.1 above.

The approaches in articles [5,14,22,27,30] are aimed to use a special static or dynamic
feature rather than to present a novel clustering method. The analysis is not a part of this
work, and the approach should be more portable to the other file categories.

Another problem is requiring a whole dataset before running clustering. In article [5],
they need to discard all features that are unique among the whole dataset, and in article [14],
they cluster samples in iterations to find the best prototypes.

Moreover, article in [5], they uses one of the mentioned standard methods. Similarly in
articles [13,30,33], but they use a combination rather than just a single method. Article [23]
uses BIRCH, and article [27] even uses DBSCAN algorithm, which was used in the first
version of Clusty.
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The solution in article [4] is independent of the type of data, but it creates overlapping
clusters, i.e. one sample can belong to multiple clusters.

5.3.3 New Methods

Newly proposed methods based on modifying existing methods (including the current Clusty
clustering method) and considering all knowledge and requirements are introduced in the
following text. They are specifically designed for this work.

Experimental selection

The method is an extension of an approach used in Clusty’s current version by using multiple
criteria. Instead of selecting attributes and their priority, a group of attributes with a group
hierarchy is selected. Attributes in a group should be something which similar files would
have in common and something which does not change per sample e.g. attributes used for
clustering in the current Clusty. An inter-group comparison should support similarity, e.g.
four out of five attributes are in common. It will make indexing harder.

Format: <attr1_value>_<attr2_value>_<attr3_value>
Raw: 0xFFA98C69, 123, Corrupted header
Shortened: 0xFF, 123, Corr
Encoded: 481207070_495051_67111114117

Figure 5.3: Format and example of values used for clustering by Experimental selection
method

Because it is not possible to index such values when using the exact match, each sample
could compute a value, which will be used to fetch clusters. An example of a format of the
value can be seen in Figure 5.3. Each attribute in a group can be converted into a string
and shortened to a maximal defined length. This length should be defined by experiments.
Then, it should be encoded as bytes. It provides a safe splitting into a list if needed. To
avoid matching missing values (None), they should not be included in the value or they can
be removed before or after comparison. Besides that, a condition of clustering rule can be
used to prevent even creating of clusters if not all attributes in the group are present.

The similarity between two clustering values can be measured by the length of the
intersection of its parts. ArangoDB has support for using intersection, split, and length in
a database query.
Pros and cons of the method can be seen in Table 5.1. Clustering properties as defined in
Chapter 2:

Scalability: It should be capable of processing millions of samples. Only clusters matching
the value have to be fetched from the database. All necessary operations are supported
by ArangoDB database.

Ability to process different types of attributes (versatility): Aimed to work with
various data types such as strings or numbers.

Creating clusters of arbitrary shape: Should create clusters of arbitrary shape.
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Minimum knowledge of the problem when determining parameters: It is needed
to determine groups of attributes somehow.

Ability to deal with data containing noise: Noise should create its own small clus-
ters.

Incremental (online) clustering: It is possible to cluster samples online. There is not
any required knowledge related to samples or clusters. All clusters are created on-
demand.

Input record order insensitivity: The method is not sensitive to input record order.

Ability to process high dimensional data: There are no restrictions about dimension-
ality.

Constraint-based clustering capability: Constraints can be defined in the rules.

Interpretable and usable clusters: Each cluster should have at least some equal at-
tributes for each sample. It depends on a rule definition.

Pros Cons
Random values of attributes used in the
clustering do not have to cause generating
new clusters

Attributes for each rule have to be chosen,
e.g. four rules each having three to five
attributes
Manually created rules
Harder indexing

Table 5.1: Pros and cons of Experimental selection method

Ssdeep selection

This approach is similar to Experimental selection, but the selection is automatised using
ssdeep similarity hashing. It should create a few multi-criteria methods based on the result
of clustering by ssdeep. The basic principle is the following: An additional script or program
should take as input a great amount of samples (e.g. 100 000+) for each category. It would
analyse them and cluster them based on the ssdeep similarity of the whole file. Each cluster
should contain only samples with similarity above some threshold. Common attributes
would be computed for each cluster and then used to generate groups of attributes that
tend to be together, e.g., rich_header and pdb_path appear together in common attributes
of 90% of clusters. The script should return a few such groups based on some heuristics.

Using the resulted methods would not be the same as using ssdeep itself. The resulted
methods will consist of both static and dynamic attributes.

Pros and cons of the method can be seen in Table 5.2. Clustering properties as defined
in Chapter 2:

Scalability: It should be capable of processing millions of samples. Only clusters matching
the value have to be fetched from the database.

33



Ability to process different types of attributes (versatility): Aimed to work with
various data types such as strings or numbers.

Creating clusters of arbitrary shape: Should create clusters of arbitrary shape.

Minimum knowledge of the problem when determining parameters: No param-
eters needed, the rules will be auto-generated.

Ability to deal with data containing noise: Noise should create its own small clus-
ters.

Incremental (online) clustering: It is possible to cluster samples online. There is not
any required knowledge related to samples or clusters. All clusters are created on-
demand.

Input record order insensitivity: The method is not sensitive to input record order.

Ability to process high dimensional data: There are no restrictions about dimension-
ality.

Constraint-based clustering capability: Constraints can be defined in the rules.

Interpretable and usable clusters: Each cluster should have at least some equal at-
tributes for each sample.

Pros Cons
Easy generation of methods for each cat-
egory
Fast indexing by full match

Script generating methods is required
(thousands/millions of various samples
are required)
May require “re-learning” after some pe-
riod of time
Random values of attributes used in the
clustering would generate new clusters

Table 5.2: Pros and cons of Ssdeep selection method

Gradual selection

This method is closer to the standard clustering methods than the methods mentioned
above. It cannot be classified into a single type of clustering method, but it shares similar-
ities with several types. It does not belong to partitioning methods because the number of
clusters is not fixed. Rather the clusters are created on-demand. Similarly with grid-based
methods. The method is more like a combination of hierarchical and prototype clustering.

Samples will be clustered according to the leading sample, i.e., the first sample in the
cluster, which caused its creation.

All clusters should have a placer value (list of attributes to be compared) divided into
fixed and volatile parts. Contrary to the fixed part, the volatile part does not need to be
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matched exactly (some attributes can have different values). The fixed part needs to be
matched exactly to sustain a common part across all samples in the cluster. A sum of
attributes matching both parts must be greater than the specified minimum (further as 𝐸).

There will also be a need to set a threshold (further as 𝑇 ), specifying how many at-
tributes have to remain in common at least in order to place the sample into the cluster.
If the sample cannot be clustered into any cluster, a new one is created. But only in the
case if it has at least 𝑇 values. The sample cannot be clustered by this method otherwise.

If the sample has many common attributes with the cluster (further as 𝑅), but not
enough to reach the value of parameter 𝐸, clusters on the lower level, related to the cluster
on the upper level, are compared. Clusters on the highest level are fetched first, then lower
ones, and so on. There should be a depth limit to avoid recursion.

By using this kind of hierarchy, it is expected that at the highest level, there will be
a small number of clusters with very low inter-similarity. In the lower levels, clusters with
their samples should tend to be similar to samples in the clusters above them or near them
(siblings). Each cluster can be considered independent (do not use relation) or dependent,
i.e., clusters on the higher level will also include samples from the lower levels (may be
limited to specific depth).

In the case of blacklisting or reclustering a non-leaf cluster (in any level), all direct child
clusters could become clusters on the level of removing cluster — even if they have any
alternative connection to another cluster — because they have a hard value that would not
correspond to any other cluster. Another solution is to choose master children who will
become a new high-level cluster. There is also a possibility to cluster all samples anew.

Let describe clustering in an example. Table 5.3 shows nine samples, each having six
attributes. The process of clustering a single sample is described in Code 5.1. The result
of three different clustering runs is shown in Figure 5.4. Three clustering runs are shown
in columns, where the first column presents clustering where samples arrived in order as
can be seen in Table 5.3, the second column presents clustering where samples arrived in
reversed order, and the last column presents clustering where samples arrived in reversed
order and odd first. The lines follow pattern N) V1 V2 V3 V4 V5 V6: X/Y | Z, where
N is a cluster number in the order clusters are created, V1 – V6 are values of attributes
A1 – A6, X is the ID of a sample (according to Table 5.3), Y is the order number of the
sample, and Z is the parent cluster where _ means that there is not a parent cluster. There
is a hierarchic structure of the clustering on the bottom of each column. The first shows
cluster IDs, the second samples IDs.

_ S1 S2 S3 S4 S5 S6 S7 S8 S9
A1 A A A I I A V A _
A2 B B B J J B W B _
A3 C C C K K K K C _
A4 D D X L L L D L L
A5 E E Y M Q Q E M M
A6 F G Z N R R F N N

Table 5.3: Nine samples S1–S9 with up to six attributes A1–A6. S1 and S4 are totally
different, the rest are their variations and combinations.
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def cluster_sample(sample, level=0, parent_cluster=null) -> None:
clusters = get_clusters(level, parent_cluster)
for cluster in clusters:

num = match(sample, cluster)
if num >= S:

place_sample_in_cluster(sample, cluster)
return

elif num >= R:
cluster_sample(sample, level++, cluster)
return

place_sample_in_new_cluster(sample)

Code 5.1: Pseudo code of function to cluster a sample using proposed gradual clustering
method

Figure 5.4: Clustering of samples from Table 5.3. Each of the columns represents different
order of samples. The first diagram in column shows clusters’ IDs, the second one shows
samples’ IDs.

Pros and cons of the method can be seen in Table 5.4. Clustering properties as defined in
Chapter 2:

Scalability: It should be capable of processing millions of samples. Because it is often
necessary to fetch many clusters, techniques to lower this amount are really handy.
The main technique to reduce the number of samples to be fetched is using a hierarchy.
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Only the clusters on the top of the hierarchy have to be fetched every time. If none of
them is sufficient, either some cluster descendants are tried or a new cluster is created.
Another space reduction can be achieved using a bitmask. Each of the attributes
used for clustering will have assigned a position in the mask revealing its presence in
a sample or a cluster. Then, only clusters having a number of matching ones above
parameter 𝐸 are suitable for further investigation. If the cluster has not enough
matching ones, it means that the cluster is not usable regardless of its values. The
bite-wise operation has to be supported by the database to use this feature. Luckily,
ArangoDB is able to do that.

Ability to process different types of attributes (versatility): Aimed to work with
various data types such as strings or numbers.

Creating clusters of arbitrary shape: Should create clusters of arbitrary shape.

Minimum knowledge of the problem when determining parameters: Let’s 𝐷 be
a dimension (number of attributes used in method). Then three parameters are
required: 𝐸; 0 < 𝐸 < 𝐷 - minimal number of equal attributes to consider cluster
as correct one for sample, 𝑅; 0 < 𝑅 < 𝐷 - minimal number of equal attributes to
consider a cluster as related, 𝑇 ; 0 < 𝑇 < 𝐸 - minimal size of the fixed part.

Ability to deal with data containing noise: Noise should create its own small clus-
ters. If a sample is very different to any cluster representing a sample (base sample),
a new cluster on the topmost level is created.

Incremental (online) clustering: It is possible to cluster samples online. There is not
any required knowledge related to samples or clusters. All clusters are created on-
demand.

Input record order insensitivity: The method is sensitive to input record order and
thus can create different clustering result every time.

Ability to process high dimensional data: There are no restrictions about dimension-
ality. In the case of using a bitmask to reduce the number of fetched clusters, the
mask is the limitation. For example, a 32b mask allows up to 32 dimensions. 32b
is the current limitation of ArangoDB bit operations. It can be overcomed by using
multiple masks.

Constraint-based clustering capability: We can consider parameter 𝑇 to be a con-
straint specifying a minimum number of equal attributes among all samples in a clus-
ter.

Interpretable and usable clusters: Each cluster should have at least 𝑇 equal attributes
for each sample. Also, as a side-effect of using cluster hierarchy, clusters can have
relationships pointing out an inter-cluster similarity.

To sum up all ambiguities: (1) parameters 𝐸, 𝑇 , 𝑅 and a number of levels can be set
either globally or specific for each method/category, (2) they can be set to a static value
or computed at run-time, for example on the basis of cluster level, (3) each cluster can be
either independent or dependent on another cluster forming a single cluster (i.e., they will
be presented as a single cluster), (4) even it can be restricted to only a specific depth.
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Pros Cons
Hierarchical clustering - relations between
clusters
Automatic selection of relevant attributes
from the set

Slower indexing
A lot of network traffic because of fetching
a number of clusters
Sensitive to the order of samples

Table 5.4: Pros and cons of Gradual selection method
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Chapter 6

Implementation

This chapter describes an implementation of the clustering tool designed in Section 5.2,
clustering methods presented in Section 5.3.3, and all auxiliary scripts used during imple-
mentation and testing.

Clustering tool — further as Rusty (Rust + Clusty) — is implemented in Rust 1.50.0
edition 2018. ArangoDB version is 3.7.8, and the RabbitMQ version is 3.8.7. For eas-
ier testing and integration, Rusty is split into library and console application. They are
described in sections 6.1 and 6.2, respectively.

Since Rusty provides only an interface for clustering methods and does not implement
them, the implementation of clustering methods is described standalone in Section 6.3.
Their implementations can also bring other features not mentioned in Section 6.1.

During the implementation of Rusty and experiments, a number of auxiliary scripts were
required to automatise processes, generate statistics, test implementation, verify clustering
results, etc. All of them are written in Python 3.9. According to linguist1 (a tool used
on GitHub.com), almost half of the source code are scripts. The most important one is
classify package, which was used to verify clustering results and generate tables with various
statistics. Auxiliary scripts are described in Section 6.5 and classify package in described
separately in Section 6.4.

6.1 Rusty Library
Rust2 was selected as a programming language. It is an alternative to C++ used in the
current version. Rust is an open-source system programming language, designed and sup-
ported by Mozilla. It is focused on speed, memory safety, and parallelism. Rust was
built from scratch and contains elements from proven system programming languages and
modern programming language design. It combines the expressive and intuitive syntax of
higher-level languages with a low-level language’s control and performance. It also prevents
segmentation failures and ensures thread safety. Even it does not support inheritance as
C++ does, it supports interface inheritance using traits [21]. Also, even the language is less
than six years old, it was considered the most beloved language among software developers
five years in a row, including the year 2020 [20]. Last but not least, Rust has its own pack-
age manager called Cargo, providing libraries for working with ArangoDB and RabbitMQ
applications.

1https://github.com/github/linguist
2https://research.mozilla.org/rust/
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All packages in Rust consist of one or more crates3. A crate is a library or bi-
nary. A package can contain one library at max. A package contains a configuration
file Cargo.toml describing crates and how to build them. The configuration file of Rusty
can be seen in Appendix A.1.

Crates can be used as external dependencies for other crates. Crate rustylib uses the
following third party dependencies:

• arangors for communication with ArangoDB database

• chrono to work with date-time structures

• clap to process console arguments needed for get_result_name

• config for parsing configuration from INI files

• lapin for communication with RabbitMQ server

• futures_executor for asynchronous work with lapin crate

• indicatif to display the progress bar

• log for logging

• regex to sanitise the name of directory with samples when generating result name by
get_result_name

• threadpool for creating and managing a pool of threads

All dependencies with their used versions and features4 can be seen in a snippet of the
configuration file mentioned above in Appendix A.1.

Rust does not support class inheritance since it does not even have classes. Instead,
it allows to define structures via struct keyword and implement methods for them via
impl keyword. This allows to create objects having attributes and methods, and use self
reference. To provide a common interface for several objects, Rust provides so-called traits.
Structures implementing the sample trait have to provide all functions defined by the trait.
Traits can be inherited, which causes the necessity to define functions for all deriving traits
when implementing inheriting trait. All class diagrams referring to Rust in this work are
Rust structures.

An entry point to Rusty library is a function run_clustering in lib module. It takes
care of the creation of all necessary database collections and indexes, spawns a specified
number of workers, publishes hashes of samples if needed, and replenish workers if any of
them had failed. Besides that, the library provides get_result_name function for gener-
ating a result name from the given console arguments or from a combination of date-time
and the given directory with samples.

A worker is defined in worker module in Worker structure. It does not have creator func-
tion (i.e. attributes are defined by instantiating structure) and provides only one method
run. Worker has two attributes library configuration and clustering mode. The only pa-
rameter of run is the clustering result name (it is also a name of RabbitMQ query). It uses
lapin crate to connect to the RabbitMQ server and arangors crate to connect to ArangoDB

3https://doc.rust-lang.org/book/ch07-01-packages-and-crates.html
4Cargo ”features“ provide a mechanism to express conditional compilation and optional dependencies.

See more https://doc.rust-lang.org/cargo/reference/features.html
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server. Then it consumes incoming messages in a loop and clusters sample one by one by
cluster_sample method.

All work with the database is enclosed in db module. This structure, alongside required
collections, is described in Section 6.1.3. To cluster the sample, it first needs to fetch the
sample from the database and deserialize it into Sample object. After that, it gets rules from
a sample-specific placer by get_rules method (mandatory for each placer implementing
Placer trait). Then, it goes through rules, one by one, and tries to cluster sample the
current rule’s clustering method. After the sample is clustered, it acknowledges the received
message to the RabbitMQ server and continues with another sample. The cluster and
sample structures are described in sections 6.3 and 6.1.2.

As was already mentioned above, a rule set is being run through in order defined in
a specific placer. A sample placer is a place for the definition of clustering rules. It has to
implement trait Placer. It can be defined for any type of sample, e.g. for binary.

Clustering rule is a structure which contains all necessary mechanisms to fetch usable
clusters, to decide whether the rule can be used for the sample, and to decide whether
a given cluster is right. It uses one of the implemented clustering methods.

The clustering method is a structure implementing Method trait. The trait requires
implementing place_sample_by_rule function. A method has to define how clusters are
fetched and updated based on the given rule. For example, if we take into account imple-
menting the clustering method as defined in the current Clusty, i.e. clustering by a single
attribute, a cluster created by the given rule and having a value of the given attribute is
used. Updating of the cluster requires re-computation of common attributes only. Another
method may require several clusters instead of one, etc.

The clustering method, clustering rule, and placer are described in sections 6.1.4, 6.1.5,
and 6.1.6.

6.1.1 Cluster

A structure representing cluster database object is a simple structure without any methods.
It uses serde and serde_json crates to serialise and de-serialise database object. Fields id
and key created and required by ArangoDB are excluded from serialisation. The rest
attributes are:

• category which cluster belongs to

• rule cluster was created by

• value cluster was fetched by

• is_valid referring whether cluster is valid or not

• base_sample which caused cluster creation

• common attributes of all samples in the cluster

• created_at date-time

• updated_at date-time
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6.1.2 Sample

Rust does not allow structure inheritance. Each derived sample must contain a field with the
deriving sample to avoid duplication definition of generic attributes. However, this makes
accessing attributes convoluted. For example, to access size field in the grandparent, one
has to use var.sample.sample.size, where var is variable with the derived sample. Using
Rust macros to inject attributes is not possible.

To overcome this oddity, a trait is used to provide an interface for getting and setting
values. Each derived sample structure has to implement all traits for all parents because of
trait inheritance. The class diagram in Figure 6.1 shows the implementation of the generic
sample, binary sample and PE sample. Each of them has a structure storing its fields
and a trait providing an interface for them. It is then further abstracted behind Sample
enumeration.

Crate serde allows to auto-generate serializer and deserializer for Rust structures and
enumerations. The only thing needed is to call a macro. It is even able to serialise and
deserialize database object into a structure as described above and shown in Figure 6.1.
Code 6.1 shows Rust code where samples from the database in the form of JSON objects
are automatically converted into a vector of Sample structures regardless of their specific
type. The type is determined by the value of _type of each document.

let aql = AqlQuery::builder()
.query("FOR␣sample␣IN␣samples␣RETURN␣sample")
.build();

let samples: Vec<Sample> = database.aql_query(aql).unwrap();

Code 6.1: Rust code showing automated parsing of a list of database objects into
a vector of Sample structures

Because Rust is very strict to types, it was better to cover up sample inheritance into
enumeration called Sample. It enumerates all defined sample structures and implements
all getters and setters for them. It means that all samples in enumeration have available
getters and setters for all existing attributes regardless its own structures. It returns None
if the current structure does not have acceded attribute.

6.1.3 Database

All database-related functions are implemented in ArangoDB structure. This structure
holds database connection, database object, all necessary collection names, the name of the
current clustering result, and is_ad_hoc flag.

All clustering result-specific collections use the result name as a suffix in the collection
name. For example, if the result name is “rusty”, the name of clusters collection will be
“clusters_rusty”, the name of clustering collection will be “clustering_rusty”, and so on.
All collections are described in Table 6.1. Placeholder symbol <rn> stands for result name.
All collections have created indexes for _id and _key by default. Edge collections have
_from and _to indexes in addition. The collections purposes are described in Section 5.2.2.
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BasicSampleStruct

+ id:str
+ key:str
+ path:str
+ size:int
+ filetype:str
+ category:str
+ sha256_hash:str

<<trait>>
BasicSample

+ get_id():str
+ has_id():bool
+ get_key():str
+ has_key():bool
...

<<trait>>
BinarySample

+ get_architecture():str
+ has_architecture():bool
+ get_detected_compilers():list
+ has_detected_compilers():bool
...

<<trait>>
PESample

+ get_rich_header():str
+ has_rich_header():bool
+ get_pdb_path():str
+ has_pdb_path():bool
...

BinarySampleStruct

+ sample:BasicSampleStruct
+ architecture:str
+ detected_compilers:list
+ detected_languages:list
+ overlay_size:str
+ entry_point_address:str
...

PESampleStruct

+ sample:BinarySampleStruct
+ rich_header:str
+ pdb_path:str
+ resources:list
+ anomalies:list
+ icon_hash:str
...

Figure 6.1: Class diagram of samples’ inheritance. Each structure contains structure of
inherited sample. The traits encapsulate the work with the nested structures.
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Collection name Indexes
samples sha256_hash
controller N/A
clusters_<rn> category, rule, value
clustering_results name
blacklist_<rn> category, rule, value
blacklist_samples_<rn> sha256_hash
clustering_<rn> sha256_hash
waiting_room_<rn> N/A

Table 6.1: Database collections with appropriate indexes

6.1.4 Method

Rusty supports defining multiple clustering methods. To define a new clustering method,
one has to create a structure implementing Method trait, and register this clustering method
in MethodType enumeration. It can be used then for creating clustering rules.

The clustering method has to implement place_sample_by_method function, which
tries to place the given sample with the given rule into a cluster. It is up to the method to
choose a proper cluster for the sample. Whether the given rule can be or cannot be used is
determined by the condition in the rule.

6.1.5 Rule

Each clustering rule is implemented via Rule structure. It has a unique global name. It has
to use one of the supported clustering methods. Supported clustering methods are stored
in MethodType enum. If the clustering rule needs to encapsulate any related configuration,
it can be stored as a key-value dictionary in config field.

Each rule must provide value according to clusters will be fetched. I.e. if a rule is
based on a single attribute rich_header, the value would be this attribute’s value. A field
value is a closure taking sample as a parameter and returning the value extracted from the
sample. Fields cond and placer are closures as well. Closure cond also takes a sample
as a parameter and defines a condition that has to be met to use this rule for clustering.
It can use the parameter to perform any logic that is required to evaluate rule usability.
The last closure placer takes sample and cluster as parameters and determines whether
the sample can be placed into the cluster or not. It does not return a boolean value but an
integer. Zero means false, anything else means true.

All closures are stored in the Rule’s structures, but they are exposed in the form
of methods. A method get_value calls value, method can_be_used calls cond, and
method place_sample calls placer converting its return value to boolean. The last method
get_similarity calls placer function same as place_sample, but it preserves its return
value. This method can be used for clustering rule, which returns additional info instead
of simple boolean.
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pub fn pe_rich_header() -> Rule {
RuleBuilder::new("pe_rich_header", MethodType::KeyFeatures)

.with_value(Box::new(|sample| sample.get_rich_header()))

.with_condition(Box::new(|sample| sample.has_rich_header()))

.with_placer_function(Box::new(|sample, cluster| {
(sample.get_rich_header() ==

cluster.base_sample.get_rich_header()) as i32
}))
.build()

}

Code 6.2: Example of implementing Rule using KeyFeatures method with a single
attribute rich_header. If a sample contains rich_header, the rule can be applied
and the sample can be clustered by the value of rich_header.

Because of defining several closures in a row make it less readable, RuleBuilder can be
used for Rule creation instead, as shown in Code 6.2. It provides with_config, with_value,
with_condition, and with_placer_function building rule. Rule’s name and method_type
are passed in builder initialisation.

6.1.6 Placer

A placer is a collection of rules for a specific category. It has to implement Placer trait
from placer module. Specific placers are implemented in specific modules, e.g. PEPlacer
with all rules and trait implementation is located in pe_placer module.

In order to allow the re-usability of rules, the rules can be defined in standalone functions
inside a specific placer. Any other specific placer can import these function. An example
of a rule defined in a standalone function can be seen in Code 6.2.

pub struct PEPlacer;

impl Placer for PEPlacer {
fn get_rules(config: Option<&config::Config>) -> Vec<Rule> {

vec![pe_rich_header()]
}

}

Code 6.3: Example of implementing Placer trait for PEPlacer with the only one rule
from Code 6.2 above. All samples will be clustered based on the value of rich_header.
If the attribute is missing, the sample can not be clustered.

To implement a placer for a new category, one has to create a new module and structure.
The structure can be empty but has to implement Placer trait which exposes get_rules
method. Also, he needs to register the placer in Worker::cluster_sample method under
the appropriate sample’s category. An example of the placer implementation can be seen
in Code 6.3. The placer can import rules from other placers or implement new ones.
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6.2 Rusty Tool
Rusty as a binary is a tool combining provided arguments and parsed configuration from
a configuration file into parameters passed to Rusty library. It uses clap crate to parse
console arguments, simplelog and log crates to set up logging, and config crate to parse
the configuration file. All arguments have default value except file. Clap crate supports
creating constraints between arguments. For example, file argument is mandatory in
reclustering or ad-hoc mode only. All available arguments and the description can be seen
in Figure 6.2. An example of running Rusty can be seen in Figure 6.3. It shows two
progress bars. The first is a progress bar for publishing messages and the second one is for
clustering of samples. It can be built by running $ cargo build --release. Then it can
be executed by $ ./target/release/rusty.

Argument -j or --join can be used in any mode. Its purpose is to join already running
clustering. The difference is that it will not publish any messages, only create a pool of
workers.

$ ./target/release/rusty --help
Rusty 0.1.0
Multi-criteria clustering daemon

USAGE:
rusty [OPTIONS]

FLAGS:
-h, --help Prints help information
-j, --join Join already running clustering
-V, --version Prints version information

OPTIONS:
-c, --concurrency <N> Maximal number of workers that will be used to analyse and

cluster the samples. By default, the number from
configuration file is used.

-f, --file <PATH> Path to input file with sample hashes or cluster IDs.
-m, --mode <MODE> Clustering mode [default: continuous] [possible values:

continuous, ad-hoc, reclustering]
-n, --result-name <NAME> Result name

Figure 6.2: Help message of Rusty tool

Continuous mode does not expect arguments. The result name is a constant, and the
samples are not loaded from any file, rather they arrive continuously by other services.

Ad-hoc mode expects a file with hashes of samples to be clustered. If the result name
is not provided, a new one is generated based on filename and date-time.

Reclustering mode is the same as ad-hoc mode, except the sample is not skipped if it
is clustered already.
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$ ./target/release/rusty -c 64 -m ad-hoc -f hashes.txt
done 100% [##############################] 100000/100000 [00:00:05<00:00:00, 16723/s]
done 100% [##############################] 100000/100000 [00:21:04<00:00:00, 79/s]

Figure 6.3: Example of running clustering in ad-hoc mode, using 64 workers, and taking
hashes of samples from hashes.txt file

6.3 Clustering Methods
This section describes an implementation of the clustering method described in Section 5.3.3.
The Gradual selection method is implemented in HierarchicalMethod, and Ssdeep selec-
tion is implemented in KeyFeaturesMethod. Method KeyFeaturesMethod is not usable for
Ssdeep selection only. Rather it can be used for other methods (not mentioned in the work)
using a group of attributes with an exact match for clustering. If the group has a size one,
it can implement a method in the current Clusty. Both methods implement Method trait
and are registered in MethodType enumeration. Rules created by the different methods can
be used at the same time.

6.3.1 Gradual Selection

Besides implementing Method trait, the method adds a new result-specific collection named
hierarchy_<rn>, where <rn> is clustering result name. It stores relationships between
clusters, i.e. cluster hierarchy. It also needs to extend Cluster structure with the following
attributes:

• mask used to reduce the number of clusters fetched from the database

• fixed_part to store names of attributes common used for clustering

• volatile_part to stored the rest of clustering attributes

• level storing level of cluster (-1 for non hierarchical method)

• value holds the subset of attributes selected for clustering

The configuration of parameters can be stored in the configuration file or the constants.
The configuration overwrite defined constants to allow specifying values in tests.

An algorithm of searching for a cluster can be seen in Code 6.4. It uses postponed
decrementation of parameters 𝐸 and 𝑅 (see Section 7.4.3). Condition 𝑅 < 2 is a depth limit
for clusters and recursion. What clusters are fetched depends on the stage of clustering. All
gathered clusters are then processed, and the most suitable or related clusters are collected
and sorted. Then, the suitable clusters are processed first, and if any of them is valid, it
will be used. If all of them were removed or there were not such clusters, all related clusters
are processed. If any of them is valid, it will be used in a recursion call as a parent cluster.
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def find_proper_cluster(current_cluster_parent_id, level, new_cluster):
E = E - max(current_level - 1, 0) # Postpone decreasing by one level
R = R - max(current_level - 1, 0)
if R < 2: # Do not create relationship based on a single common attribute

return current_cluster_parent_id
if current_cluster_parent_id: # Recursive call searching for children

clusters = get_child_clusters(current_cluster_parent_id)
elif new_cluster: # Second fetch after creating new cluster

clusters = get_recently_created_top_level_clusters()
else: # First fetch before creating new cluster

clusters = get_top_level_clusters()
for cluster in clusters: # Iterate over all clusters

similarity = rule.get_similarity(sample, cluster)
if similarity >= E:

suitable_clusters.append(cluster)
elif abs(similarity) >= R:

related_clusters.append(cluster)
for cluster in sorted(suitable_clusters):

if was_deleted(cluster): # Wait until validity or deletion
continue

delete_cluster(new_cluster) # Suitable cluster exists already
update_cluster_and_place_sample(cluster, sample)
return None # Successfully clustered into existing cluster

for cluster in sorted(related_clusters):
if was_deleted(cluster): # Wait until validity or deletion

continue
return find_proper_cluster(cluster.id, level++, new_cluster)

# A proper cluster was not found, return parent ID if is some
return current_cluster_parent_id

Code 6.4: Pseudocode of selecting a proper hierarchical cluster using
HierarchicalMethod

6.3.2 Ssdeep and Experimental Selection

Ssdeep selection method requires creating a script that will generate groups of attributes
based on the clustering by ssdeep hash similarity. Because Clusty already supports clus-
tering by ssdeep hash, it was used for it. The script generating groups is described in
Section 7.5.1.

Both approaches use the same algorithm of searching for the cluster and placement into
cluster implemented in KeyFeaturesMethod. Searching algorithm can be seen in Code 6.5.
The difference between them is that Ssdeep selection provides an exact match to get suitable
clusters, while Experimental selection requires advanced operations in the database query,
like intersection.
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def find_proper_cluster(clusters, new_cluster):
for cluster in clusters: # Iterate over all clusters

if rule.place_sample(sample, cluster)
if was_deleted(cluster): # Wait until validity or deletion

continue
if new_cluster:

delete_cluster(new_cluster) # Suitable cluster exists already
update_cluster_and_place_sample(cluster, sample)

Code 6.5: Pseudocode of selecting a proper cluster using KeyFeaturesMethod

6.4 Classify Tool
Classify is a Python3 package used for obtaining various information, mostly based on the
sample’s classification. These values can be used for evaluating of quality of clustering
results or for comparison. The main requirement of having a classification for each sample
in the clustering result. The design of architecture and implementation of the extraction
process is described in Section 6.4.1. Example usage with the description of output in input
is described in Section 6.4.2.

6.4.1 Design and Implementation

The design consists of an entry point file and two classes. It uses several Python packages:

• click to process console arguments

• plotly for plotting graphs

• tabulate for generating tables

• tqdm for displaying a progress bar

• coloredlogs alongside verboselogs to provide useful messages

All console arguments are described in Section 6.4.2. A role of the entry point script, except
parsing of arguments, is to gather all clusters for the given clustering result. These clusters
are then processed by ClusterListStatistics class, which uses ClusterStatistics class
to keep data about each cluster. After processing all clusters, it also computes final statistics
for all clusters and generates output tables.

ClusterStatistics

It is a Python dataclass5 storing information about a single cluster. It holds a list of samples,
lists of all found classifications for each classification part (i.e. severity, type, strain), flags
revealing whether a cluster is mixed or not according to a specific source, and all generated
logging messages.

It exposes several public methods for easy addition of attributes, e.g. a new sample.
A method verify is used to generate flags and messages upon collecting all samples in
the cluster. A mixture of the samples indicated by the flags is determined by the process

5https://docs.python.org/3/library/dataclasses.html
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described in Code 6.6. The first evaluated classification part is strain, then type, and then
severity. If there is just a single value (e.g. there is only one value when considering strain),
an appropriate mixture flag is set to false. If there is more than a single value, it now
depends on the previous flag. If the previous flag was false, it is set to false regarding
its mixture. If the previous flag is true, it will be set according to the mixture of the
current part. The reason is that if the identified strain is the same among all clusters,
having different types is not considered a mixture rather as a bug in the classifications.
Like having several aliases for the same strain, there can also be cases of having several
types for the same strain. It can be caused by older classifications for example.

def set_flags(classification_attr)
len = classification_attr.len()
if len == 1 or (len == 2 and has_none and skip_none):

print("Single classification: {}", classification_attr[0])
elif len > 1:

# Set only if related attribute is mixed as well.
# Missing classification (None) can cause mixed cluster as well.
# If strain is not mixed, type cannot be mixed.
# If type is not mixed, severity cannot be mixed.
# There is possibility that all parts will be mixed in the same time.
if related_attr_is_true or related_attr_has_none_and_another_value:

print("Multiple classifications: {}", classification_attr)
else:

# No classification.
print("No classification.")

Code 6.6: Pseudocode of determining mixture of cluster for a single classification part

ClusterListStatistics

Each cluster obtained from the database by the entry point script is processed by this
dataclass. It creates ClusterStatistics dataclass for each cluster and sequentially adds
information about samples. After each cluster is parsed and evaluated, it is further pro-
cessed by this class. It holds a list of parsed clusters and a number of various counters used
for generating statistics about the clusters. The method compute_statistics iterates over
all parsed clusters and aggregate information about them. For example, it computes the
number of clusters, the number of samples, the number of mixed clusters for each classifi-
cation part, and the number of samples in the mixed clusters for each classification part.

6.4.2 Usage and Example Output

All supported arguments can be seen in Figure B.1. The tool is able to show mixed clusters,
their classification, and hashes of samples inside them. The clusters can be filtered accord-
ing to a specific classification part, e.g. show only clusters with mixed severity. It takes
classifications from two sources. The first classification obtained from Avast internal tool
Tagger, and the second one from the classification of Clusty cluster a sample belongs to. Ar-
gument DB_NAME is the name of ArangoDB database where the result named RESULT_NAME
is being searched. Argument --clusty-result-name refers to a clustering result where the
classification for samples will be gathered from. The classification from Tagger is considered
as a ground truth. It is possible to filter clusters based on the specific source of classifica-
tion, e.g. Clusty, or to use the better one. It also allows excluding missing classifications
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(None) from participating in evaluating a mixture of clusters. Note that filtering clusters
do not affect generated tables. It affects only listed clusters. A part of the output can be
seen in Appendix B.2.

6.5 Auxiliary Scripts
The auxiliary scripts were used for various purposes. For example, automating processes
like moving samples between databases or obtaining various data like the hierarchical tree
of clusters. Below is a list of the scripts with a brief description of their purpose:

• Scripts update_tags_arango.py and update_tags_mongo.py were used to insert
classification from Tagger into samples in the specific database. They also filter out
corrupted and infected samples and rename known aliases to the canonical names of
their strains. If a sample is corrupted, it is not harmful since it is not executable.
The current version of Clusty places corrupted samples according to their corruption.
Sample with classification infected is a clean sample infected with malware. Clusty
uses advanced techniques,like YARA rules, to detect those samples. An aliases are
alternative names for strains. Without renaming aliases to their canonical names,
clusters having samples with several aliases would be considered mixed.

• Script to_arango_json.py was used to copy samples analysed in Clusty from Clusty’s
MongoDB to Rusty’s ArangoDB.

• Script speed_test.py was used for testing clustering speed and generating graphs.
An examples of such graphs can be seen in Figure 7.5 and Figure 7.6.

• Script send_msg_to_rmq.py was used in the beginning of the project. Its purpose is
to send hashes of samples stored in a file to clustering running in continuous mode.

• Script remove_empty_values.py removes empty attributes from sample objects in
the database.

• Script get_pe_stats.py was used to gather statistics about PE samples. An example
of the output can be seen in Table 7.1 and in Figure 7.4.

• Script get_dataset_classification_stats.py was used to get data about classi-
fications in the dataset. An example of the output can be seen in figures 7.1, 7.2,
and 7.3.

• Script get_cluster_tree.py was used to generate a tree of clusters as can be seen
in Appendix D.1.

• Script get_aliases.py was used to combine malware aliases from various sources
since there was not a single database containing all of them.

• Script generate_hierarchic_samples.py was used for generating samples having
specific attributes to test hierarchic clustering in a deterministic way.

• Script generate_code_from_template.py was used as a partial automation of the
process of creating rules based on Ssdeep selection.
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• Script copy_arango_collection.py was used to copy samples between databases in
Rusty (e.g., test database and standard database).

• Script clusty_clustering_results.py was used to gather clustering statistics from
the Clusty clustering result. An example of such statistics can be seen in Table 7.2.

• Script clusty_clusters_common_attributes.py was used for extracting common
attributes of clusters created by ssdeep hash similarity in the current Clusty. The
script has also a simple test script tests_clusty_clusters_common_attributes.py.
Its behaviour is further described in Code 7.1.

Besides the scripts mentioned above, there was also an attempt to visualise clusters
on the web, especially the hierarchical ones. This attempt is implemented in the script
app.py. A preview of cluster hierarchy can be seen in Figure F.1. Each cluster will show the
cluster-related information when clicked. In this case, we can see 12 clusters, four of them
are top-level clusters. The displayed information concert the cluster with ID 847751502.

It worked for several clusters but not for thousands. It can be optimised in many ways,
but the app was not a part of the work target, and therefore it was only not further used
in this way.

However, it can also display information about a specific cluster, e.g. what is common
and what are the differences between samples, which was quite usable for manually viewing
the clusters. For example, in Figure F.2, we can see a cluster having five attributes in a fixed
part. They are the same for all samples in the cluster. The cluster contains five samples.
The first row, below the header of the volatile part, with bold values, is a base sample of
the cluster. Not all attributes are listed in the figure because of a lack of space. We can
see that samples are very similar since they have five common values and the rest seem
to follow the same pattern. The version_info attribute seems to contain auto-generated
values, leading to a tiny cluster if used for clustering.
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Chapter 7

Experiments

This chapter describes experiments with clustering methods presented in Section 5.3.3.
All experiments were done on the dataset described in Section 7.1. The clustering results
of the current version of Clusty can be seen in Section 7.3. To understand the tables and
colours used in this section, see Section 7.2. Experiments with the Gradual selection method
are described in Section 7.4, experiments with Ssdeep selection method in Section 7.5, and
experiments with Experimental selection method in Section 7.6. All methods were designed
and implemented as described in sections 5.3.3 and 6.3.

Python package classify (see Section 6.4) was used to verify, compare, and evaluate
clustering results. The scripts described in Section 6.5 were used for generating various
statistics and other related work.

All experiments and tests were executed on a server with Linux 4.19.0-16-amd64
Debian 4.19.181-1 (2021-03-19) x86_64 GNU/Linux. It has 2 CPUs AMD EPYC 7502
32-Core Processor and 252 GB RAM. All Rusty, ArangoDB, and RabbitMQ run on the
same server.

7.1 Dataset
The dataset consists of more than 500 000 PE samples. They were obtained from Avast
internal database by selecting samples from January and February 2021. To assure they
are not from a single day or a single week, they were selected in several batches with time
ranges (1–2 January, 3–4 January, etc.).

The selected samples were then analysed and clustered by Clusty. The analysed samples
were then transferred from Clusty’s MongoDB database into Rusty’s ArangoDB database.
All transferred samples were then extended with classification (i.e., severity, type, strain)
obtained from another Avast internal tool, Tagger, which holds Avast classifications for
samples. Samples without Avast classification, with severity damaged or infected, or with
classification having the confidence below 70 were removed from the dataset. Also, all
known aliases were replaced with their canonical names.

Samples without classification were removed due to the inability of determining the
correctness of their placement in clusters. If a sample does not have a classification, we
cannot tell whether it is malware or not and what strain exactly. It would require further
investigation of each sample. Having classification for each sample allows computing the
correctness of clusters without any further investigation.
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Sample with classification but lower classification confidence was removed due to in-
creased probability of the wrong classification. It could cause additional mixed clusters.
Only clusters with classification created with high confidence were preserved.

Damaged samples were removed due to their special status. If a sample is corrupted,
it is not harmful since it is not executable. The current version of Clusty places corrupted
samples according to their corruption.

Sample with classification infected is a clean sample infected with malware. It means
that the base of the sample is a clean sample, which was later infected by malware by
inserting malicious code into the sample. This kind of samples is hard to detect since many
extracted features belong to the clean part of the sample. Clusty uses advanced techniques,
like YARA rules, to detect those samples.

After removing unwanted samples, the size of the dataset was reduced to approximately
500 000 samples, each sample having an Avast classification with confidence above 70. Due
to the great number of experiments that had to be done, this subset was further reduced
to 100 000 (by selecting random samples using RAND function in ArangoDB) in order to
decrease the duration of clustering. This subset was used for experiments, and all tables
and figures in this chapter refer to this subset unless explicitly stated otherwise.

All attributes obtained from analysis by Clusty can be seen in Table 7.1. The first
column holds the attribute’s name. The second column shows how many of the selected
100 000 samples had any value for an appropriate attribute. The greener the higher per-
centage, the redder the lower percentage. The third column shows how many distinct values
were found. The last column shows a percentage ratio between all values and unique values.
The middle value 50 % is lighter, the lesser or greater values are redder. For example, 87 %
of samples have attribute anomalies. The distinct values made 0.13 % of all values (116 in
total).

What we can see in Table 7.1 is that there are several groups of attributes. The first
group are stable attributes present in almost all PE samples, e.g. size, architecture,
entry_point_address, or section_table_hash. Then, there is an opposite group of very
rare attributes, e.g., uncommon_timers, uncommon_pipes, uncommon_jobs, or watermark.

Last but not least, we can see is that there are attributes with only a few distinct values,
e.g., architecture (always x86) or detected languages (mostly Visual Basic). Then
there are also attributes with a great number of distinct values, e.g., uncommon_mutexes or
uncommon_atoms.

94.5%

4.9%

malware

clean

other

Figure 7.1: Classification severity distribution among samples
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Attribute name Has value [%] Unique values Unique values [%]
anomalies 87 116 0.13
api_calls 51.51 6492 12.6
architecture 100 1 0
is_corrupted_but_loadable 2.38 2 0.08
corruption 2.38 19 0.8
detected_languages 15.76 9 0.06
detected_compilers 92.99 490 0.53
entry_point_address 100 4158 4.16
entry_point_bytes 92.24 24755 26.84
exports 1.12 242 21.59
export_table_hash 1.12 242 21.59
icon_hash 41.9 3985 9.51
import_table_hash 93.74 8011 8.55
imports 94.26 7921 8.4
manifest_hash 21.62 1070 4.95
overlay_size 63.88 28341 44.37
pdb_path 3.88 676 17.42
resources 50.19 2855 5.69
rich_header 33.66 1858 5.52
section_table_hash 100 6063 6.06
sections 100 881 0.88
size 100 35696 35.7
symbols 2.06 278 13.51
version_info 34.79 3803 10.93
watermark 0.18 15 8.33
uncommon_atoms 1.18 693 58.78
uncommon_commands 35.71 26621 74.55
uncommon_cuckoo_signatures 50.74 4380 8.63
uncommon_dependencies 0.65 389 59.85
uncommon_events 1.36 543 40.04
uncommon_gvma_signatures 49.81 1359 2.73
uncommon_hosts 4.28 340 7.94
uncommon_jobs 0.01 6 60
uncommon_mailslots 0.02 7 36.84
uncommon_mutexes 26.45 1694 6.41
uncommon_named_sections 4.86 186 3.83
uncommon_pipes 0.46 189 41.09
uncommon_ports 1.01 354 35.08
uncommon_registry_keys 32.11 2872 8.95
uncommon_scheduled_tasks 1.08 100 9.29
uncommon_semaphores 5.31 1911 35.95

Table 7.1: Histogram of PE sample attributes in the dataset
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Figure 7.2: Classification type distribution among samples
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Figure 7.3: Classification strain distribution among samples

Figures 7.1, 7.2, and 7.3 show a distribution of classifications among 100 000 samples.
We can see that almost all samples are malware, the most common type is trojan, and
the most common strain is gigu. Note that the classification of clean sample is clean with
type and strain set to None. Missing type (None) does not automatically mean the sample
is clean. There can be another reason. Also, even if the type has a value, severity can
be missing. The chart in Figure 7.2 shows 5453 None classifications, while the chart in
Figure 7.1 shows only 4876 clean samples.

On the basis of Table 7.1, attributes with variability below 1 % were excluded from
further consideration and usage for clustering: is_corrupted_but_loadable, anomalies,
architecture, corruption, detected_compilers, detected_languages, overlay_size,
and size. Attributes exports, imports, and sections were also excluded because of the
presence of their hash variant in attributes (e.g. sections ∼= section_table_hash).

The remaining attributes can be divided into static and dynamic. This division can be
seen in Appendix C.1. Figure 7.4 shows a number of attributes having value per sample.
Figure 7.4a shows a chart for a subset of all static attributes. Each sample has at least
two such attributes and 12 at max. The average is 6.3. Figure 7.4b shows a chart for the
subset of all static attributes used for clustering in the current Clusty (a subset of all static
attributes). Figure 7.4c and Figure 7.4d show similar charts but for dynamic attributes.
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(a) All static attributes (2/12/6.3) (b) All static attributes used for clustering in
Clusty (1/8/3.6)

(c) All dynamic attributes (0/11/2.7) (d) All dynamic attributes used for clustering in
Clusty (0/7/1.5)

Figure 7.4: A number of attributes per sample (min/max/avg)

7.2 Clustering Results Overview
Clustering results in this chapter are evaluated and compared using data obtained by
classify (see Section 6.4). It gives an aggregated statistics about the clustering result.
A shortened version of the output can be seen in Appendix B.2. It returns a number of
created clusters, a number of samples in clusters, and a number of samples that could not
fit in any clusters. Further, it returns a table showing a level of a mixture of clusters. Signs
[s] and [c] reveal whether the number is based on samples or clusters. Row TAG shows
statistics according to classification in samples’ tag attributes. Row TAG (s N) means that
None classifications are not used in the measurement. Rows with CLUSTY are based on the
classification of clusters in clustering result created by Clusty. The table on the bottom
shows a histogram of sizes of created clusters. The empty cells were emptied due to a lack
of space on the page. They contain values similar to the values in other cells.

The most relevant and important attributes are collected into another table for each
clustering result. An example of the table can be seen in Table 7.4. All numbers are related
to the tested clustering method. The table mostly consists of the following columns: (1)
Name is a unique name of the clustering result. It often reveals a clustering configuration,
(2) o, if present, means an ordering of rows in a group. The smaller the better, (3) clustered
is the number of clustered samples, (4) clusters is a total number of clusters, (5) the first
tiny is a percentage of the total number of tiny clusters, (6) the second tiny is a percentage
of the total number of samples in the clusters, (7) huge clusters is a percentage of clusters
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having more than 500 samples, (8) severity shows a percentage of samples clustered into
mixed clusters according to severity, (9) strain shows the sample as a column before but
according to strain, and (10) strain (s N) shows the same as a column before but does not
count None classifications.

The colours used in tables have the following purpose: (1) red cells have value worse than
Clusty, i.e. the values which are not acceptable, (2) green cells show a comparison between
clustering results. The darker green, the better value, and (3) yellow colour indicates
achieving a specific value unless stated otherwise.

A clustering result cannot be evaluated by a single metric (e.g. number of clusters)
instead of a complex view on more data. For example, having all classifications better than
Clusty cannot be considered a success if the number of clusters is so great that the average
cluster size is three. The complex view means that all the columns have to be taken into
account, each having its own level of importance. The most important columns are the
total number of samples and all classifications. Then there is a number of clusters samples
and then clusters sizes.

7.3 Current Clusty
The samples in the dataset were clustered by the current Clusty version to gain the ability
to compare the results of experiments. The results from clustering using all methods in
Clusty can be seen in Table 7.2. The results excluding YARA rules (which are the main
method used for clustering) and digital signature-based methods can be seen in Table 7.3.
The upper part of the table shows a number and a percentage of clusters mixed according
to one of the classification parts, e.g. severity. TAG is the source of classification. The row
with skip None means that None classifications were not considered during computation.
The bottom part of the table shows the number and percentage of samples located in mixed
clusters. The number in brackets in the top left corner is the total number of clusters. For
example, in Table 7.2 in the upper part, we can see that there were 5 310 clusters in total, 17
clusters were mixed according to severity, 41 according to type, and 74 according to strain.
The total number of mixed clusters is not a sum of those classifications since they may
overlap. In this case, the total number of mixed clusters is 75. In the bottom part, we can
see that there are 689 samples in mixed clusters according to severity, 151 010 according to
type, and 17 232 according to strain. The total number of samples located in mixed clusters
is 17 235.

We can notice that there is a huge difference in a total number of created clusters.
YARA is heavily used for clustering PE samples, and there is a number of rules for known
strains. These rules can be based on data not even available in Clusty, e.g. specific strings.
It often creates clusters having no common attributes at all. A digital signature is another
type of method grouping files that do not even have to be similar. In this case, similarity
does not matter since they all have verified digital signature by a trusted company. A rule-
based on corruption is another example, but this one was not excluded since all corrupted
samples should be filtered out.

The next thing we can see is that clustering with all methods has better results, in
a matter of the percentage of mixed clusters than the clustering with YARA and digital
signature. It is caused by the difference in the total number of clusters. Looking at real
numbers, we can see that clustering without YARA has more mixed clusters in total.
But, considering the percentage of mixed samples, this does not apply. The total number
of mixed samples is lesser when clustering without YARA. It is probably caused by not
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Mixed (5 310) total clusters severity type strain
TAG 75 (1.41 %) 17 (0.32 %) 41 (0.77 %) 74 (1.39 %)
TAG (skip None) 56 (1.05 %) 17 (0.32 %) 28 (0.53 %) 40 (0.75 %)
Mixed total samples severity type strain
TAG 17 235 (17.23 %) 689 (0.69 %) 15 101 (15.1 %) 17 232 (17.23 %)
TAG (skip None) 17 095 (17.09 %) 689 (0.69 %) 14 853 (14.85 %) 16 876 (16.88 %)

Table 7.2: Result of clustering with all methods in Clusty. The upper table shows a number
and percentage of clusters mixed by a specific classification, e.g. severity. The bottom
table shows a number and percentage of samples placed in clusters mixed by a specific
classification. TAG is the source of classifications. Skip None means that missing values
were not considered.

Mixed (18 895) total clusters by severity by type by strain
TAG 134 (0.71 %) 36 (0.19 %) 93 (0.49 %) 131 (0.69 %)
TAG (skip None) 111 (0.59 %) 36 (0.19 %) 71 (0.38 %) 84 (0.44 %)
Mixed (100 000) total samples by severity by type by strain
TAG 7 943 (7.94 %) 1 296 (1.3 %) 5 784 (5.78 %) 7 916 (7.92 %)
TAG (skip None) 7 769 (7.77 %) 1 296 (1.3 %) 5 490 (5.49 %) 7 439 (7.44 %)

Table 7.3: Result of clustering with all methods in Clusty except YARA and digital sig-
nature. The upper table shows a number and percentage of clusters mixed by a specific
classification, e.g. severity. The bottom table shows a number and percentage of samples
placed in clusters mixed by a specific classification. TAG is the source of classifications.
Skip None means that missing values were not considered.

detecting all aliases. Using the YARA rule, there are fewer clusters which increases the
probability of locating samples in a mixed cluster. On the contrary, clustering without
YARA rules contains much more clusters which decreases the chance of locating the sample
in a mixed cluster. A mixed cluster is considered any cluster where at least one sample’s
classification is different from the others.

7.4 Gradual Selection
This method requires a definition of three parameters: 𝐸, 𝑅, and 𝑇 . Their meaning is
described in Section 5.3.3. Besides that, it is also needed to try specific subsets of attributes.
For example, using dynamic attributes only can lead to much better results than using
static attributes only and vice-versa. Selecting the best subset of attributes and specifying
attributes values is divided into several steps. The first step is about selecting the best
subset of attributes together with specifying attribute 𝐸. The reason behind this is that
each subset can behave differently with the same value of 𝐸. For example, if the first
subset would consist of five attributes and the second consist of ten attributes, a parameter
with a value of more than five is not even acceptable for the first subset. Also, in order
to decrease the influence of the rest of the attributes, they were always set to the same
value as parameter 𝐸. It cancels the meaning of 𝑇 and decreases the meaning of 𝑅. This
step is further described in Section 7.4.1. The second step is about determining a value of
attribute 𝑇 and investigating its acquisition for clustering. It is described in Section 7.4.2.

59



Each step uses the best result from a previous step. The last step is about finding the best
value of attribute 𝑅. It is described in Section 7.4.3. To better understand the table and
used colours, see Section 7.2.

7.4.1 Selecting of Attributes and Parameter E

Table of aggregated clustering results of all experiments can be seen in Table 7.4. The values
tried for each group of attributes are based on the data in Figure 7.4. At first, all attributes
used for clustering in Clusty were used with parameter set to 3, 4, and 5. The results can
be seen in the rows clusty_3_3_3, etc. When using 𝐸 = 3, the number of samples in
mixed clusters was greater than using Clusty (red cells). Increasing the parameter value
improved the classification, but for the cost of fewer samples being clustered.

In the next results all_5_5_5 and so on, all attributes were used. There are results with
worse classification or a greater number of clusters than Clusty without YARA. The next
part of the results implements an idea of putting additional logic and splitting attributes into
two groups - dynamic and static. This is a logic that can be seen even in the current Clusty.
The group cls_dyn_1_1_1_sta_2_2_2, . . . shows the results for splitting attributes used
for clustering in Clusty, and the group all_dyn_2_2_2_sta_2_2_2, . . . shows the results
for all attributes. The result all_dyn_2_2_2_sta_2_2_2 is the first clustering result yet
which was able to cluster all samples. Note that even the number is not equal to 100 000,
it is the greatest reachable value due to 502 samples being corrupted (this error turned out
later and does not impact the results except for the total number of clustered samples being
different to Clusty results).

In order to be able to cluster all samples, a combination of several groups seemed to
be necessary. The next group of results tries to combine using all attributes alongside
attributes used for clustering in Clusty. For example, group g1_all_5_5_5_cls_2_2_2 was
selected because of the most clustered samples when used alone. The best result from this
group is g3_cls_5_5_5_cls_2_2_2, but it is still not able to process all samples. The last
result in the last group cls_all_5_5_5_cls_2_2_2_all_2_2_2 is the previous result with
additional attributes as a third rule. This result proceeded to the next step.

7.4.2 Parameter T

This step of the experiment tries to determine the importance of the parameter 𝑇 and
its most suitable value. The table in Appendix D.1 shows how the clustering result has
changed when modifying parameter 𝑇 while the other remained constant. We can see that
the differences between the results are very negligible. The conclusion is that this parameter
can be omitted as it does not improve clustering results in a significant way. It is reflected
further by keeping parameter 𝑇 equal to parameter 𝐸.

7.4.3 Parameter R

The last step is to set up parameter 𝑅, which is responsible for creating relationships
between clusters. The results can be seen in Table 7.5. It does not contain clustered
column anymore because it was the maximal value in all cases. But it contains several
columns in addition. The last five columns show the number of clusters at the specific
level. The lesser top-level clusters, the better. The cells coloured in red have worse values
than Clusty, and the yellow ones have values worse than the result from the previous step.
The same result is present here under the name rel_5_2_2. The results in the first group
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have constant values of the parameter. It was necessary to set the maximum depth as well
in order to avoid recursion error. The limit was set to 11 as a placeholder. The second group
solved the problem of max depth by decreasing of parameter’s value based on the cluster’s
depth level. The deeper, the lesser value. The second value postpones this behaviour by
one level, i.e. the value at level 0 is the same as the value at level 1. The last two groups
are similar to the previous group with the difference in decreasing of 𝐸 parameter as well.
It leads to a lower number of clusters in most cases. The reason is that there was a trend of
hitting the limit of depth and stacking many clusters on the lower levels. They often differ
in just a single attribute. By decreasing parameter 𝐸 as well as parameter 𝑅, the clusters
which were previously similar siblings were now merged into a single cluster. The depth
was limited by decreasing parameter 𝑅 to value two instead of implicit one due to always
follow multiple criteria.

The next thing we can see in the last two groups is the difference in the number of
red cells. The group without postponing of the decreasing condition has a tendency to
create much more clusters than the group postponing decreasing. It is caused by two-level
“sifting”, where the first level find the most similar cluster among much different top-
level clusters, and the second level further specifies the most similar cluster among similar
clusters. The chance of finding two equally applicable clusters is postponed to lower levels.

The result de1_rel_2_2_2 was considered the best. It uses the technique of decreasing
both parameter 𝐸 and 𝑅, which lead to fewer clusters and an automatic limit of depth.

Grouping similar clusters together is a very useful side-effect of this method. Ap-
pendix D.1 show a part of the cluster tree obtained by script get_cluster_tree.py. We
can see that it tend to group clusters with the same strain. It can be probably used to de-
tect aliases of malware strains or at least their relations. Strains PCSpeedCat and SpeedCat
seem to be related at least.
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7.4.4 Speed Test

The speed of clustering was tested using script speed_test.py. It runs clustering five times
for the following number of samples: 10k, 20k, 40k, 60k, 80k, 100k, 150k, 200k, 250k, 300k,
350k, 400k, 450k, and 500k. Each run generates a random set of samples from the whole
dataset of more than 500 k samples. Figure 7.5 shows a relation between the number of
samples and the duration of clustering. Figure 7.6 shows a relation between the number of
samples and the number of clusters. We can see that that those numbers are similar. It is
caused by decreasing parameters 𝐸 and 𝑅.

To see an asset of using bitmask reducing the number of fetched clusters, test run with
and without mask were performed. It was measured on a single instance using 64 workers
in ad-hoc mode. The average duration without using a mask was 42.5 minutes, while the
duration with using a mask was less than 22 minutes.

7.4.5 Evaluation

It is necessary to use several rules to be able to process all samples. The clustering results
look good compared to Clusty as shown in Table 7.6. Compared to clustering with YARA
rules, the total number of clusters is almost two times greater. Similarly with the percentage
of tiny clusters. It is not that bad since it is almost two times better than the results without
YARA. The number of huge clusters is lesser than both clustering results. It is caused
probably by splitting huge clusters into several smaller ones because of using multi-criteria.
The number of samples in clusters mixed by severity, e.g. mix of clean and malware, is
better in both cases. The number of samples in clusters mixed by strain is between Clusty’s
clustering results. Since it is better than the results using YARA, we can consider it a good
result. As a side-effect of using cluster hierarchy, it can reveal relations between clusters
and/or detect strain aliases.

The clustering speed is pretty slow. Even the bitmask helped a lot to reduce clustering
duration, it would be good to reduce the duration further.

Name clusters [c] tiny [%c] tiny [%s] huge clusters [%s] severity [%s] strain [%s] strain (s N) [%s]
Clusty (all) 5310 92.67 5.87 79.19 0.69 17.23 16.88
Clusty (no Yara) 18895 97.83 19.68 64.17 1.3 7.92 7.44

Rusty 9132 92.03 9.86 60 0.31 14.36 11.7

Table 7.6: Clustering results for Gradual selection (see Section 7.2 to understand)

7.5 Ssdeep Selection
This method relies on the clustering results based on the ssdeep hash similarity. Almost
one million samples were clustered by Clusty using ssdeep hash similarity method. Then,
several groups of various subsets of attributes were obtained using the auxiliary script
clusty_clusters_common_attributes.py. These groups were then written as clustering
rules using KeyFeatues method. It allows to cluster samples based on the equality of all
attributes in the group. The generation of these groups is described in Section 7.5.1. The
clustering based on those methods is described in Section 7.5.2.
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Figure 7.5: Relation between the number of samples and the duration of clustering - Gradual
selection

Figure 7.6: Relation between the number of samples and the number of clusters - Gradual
selection. It shows the total number of clusters as well as number of clusters on the top
level.
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7.5.1 Generating of Groups

The process of generating groups can be seen in Code 7.1. At first, all regular clusters (>5)
are fetched from the database. Then, a group of common attributes is extracted from each
cluster. Groups less than a specific value are removed. Then, all available subgroups are
generated from the remaining groups and added to the groups. All these groups are then
sorted by the total number of clusters matched by the group and by the total number of
samples in clusters matched by the group. For example, let’s have two clusters. The first
one has attributes A, B, and C in the common attributes and contains three samples. The
second one has attributes A, B, and D in the common attributes and contains one sample.
The subgroup AB would have assigned four as a number of samples, because of the sum
of samples of the clusters it was created from. After getting two sorted groups, they are
passed for evaluation. They are scored according to their position in both sorted groups.
The score is a sum of both positions. For example, if a group is on the top of the list
sorted by clusters and on the second position in the list sorted by samples, the resulted
score would be 0 + 1 = 1. After getting the score, they are sorted again according to the
score. Then, all groups are being iterated. Inside a loop, there is another loop iterating
over all clusters. If the group matches a cluster not matched by any of the other group yet,
it is added to the final list of groups.

def generate_groups():
clusters = get_regular_clusters_from_database()
groups, cluster_ids = get_sorted_groups_of_common_attributes(clusters)
groups = remove_groups_of_shorter_length(groups, MIN_GROUP_LEN)
add_subgroups_greater_than(groups, MIN_GROUP_LEN)
sorted_cluster_groups = sort_groups_by(groups, key=’clusters’, NUM_OF_GROUPS_TO_USE)
sorted_samples_groups = sort_groups_by(groups, key=’samples’, NUM_OF_GROUPS_TO_USE)
score_groups = evaluate_groups(sorted_cluster_groups, sorted_samples_groups)
sorted_score_groups = sort_groups_by(score_groups, key=’score’, NUM_OF_GROUPS_TO_USE)
top_score_groups = get_best_groups(sorted_score_groups, cluster_ids)

Code 7.1: Pseudocode for generating groups of attributes based on the results from
clustering by ssdeep similarity hash

7.5.2 Clustering

Table 7.7 shows all the clustering results using groups generated from various subsets of
attributes. The first group generated groups on the basis of all attributes, the second on
the basis of all dynamic attributes, the third on the basis of all static attributes, and the
last on the basis of all attributes used for clustering in Clusty.

We can see that all clustering results contain at least one red cell. Also, all clustering
results except the last one have the number of clusters greater than Clusty. It is even
worse because the numbers of samples in clusters mixed by strain are greater as well. The
best-looking result is the last one, but it is not able to cluster all samples, and the number
of samples in clusters mixed by severity is worse than both Clusty’s clustering results.

7.5.3 Speed Test

The speed of clustering was tested the same way as described in 7.4.4. Figure 7.7 shows
a relation between the number of samples and the duration of clustering. Figure 7.8 shows
a relation between the number of samples and the number of clusters.
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Figure 7.7: Relation between the number of samples and the duration of clustering - Ssdeep
selection

Figure 7.8: Relation between the number of samples and the number of clusters - Ssdeep
selection

67



N
am

e
cl

us
te

rs
 [c

]
cl

us
te

re
d 

[s
]

tin
y 

[c
%

]
tin

y 
[s

%
]

hu
ge

 c
lu

st
er

s 
[s

%
]

se
ve

rit
y 

[s
%

]
st

ra
in

 [s
%

]
st

ra
in

 (s
 N

) [
s%

]
C

lu
st

y 
(a

ll)
53

10
10

00
00

92
.6

7
5.

87
79

.1
9

0.
69

17
.2

3
16

.8
8

C
lu

st
y 

(n
o 

Ya
ra

)
18

89
5

10
00

00
97

.8
3

19
.6

8
64

.1
7

1.
3

7.
92

7.
44

al
l_

m
in

5
23

84
6

78
83

1
96

.0
1

33
.0

3
35

.8
0.

28
21

.0
9

13
.0

3
al

l_
m

in
4

30
76

2
98

52
2

97
.3

7
33

.4
4

46
.7

8
0.

26
17

.6
4

11
.6

4
al

l_
m

in
3

26
30

9
99

96
5

97
.1

9
28

.0
2

50
.7

2
0.

7
21

.7
4

14
.0

7
al

l_
m

in
2

25
68

1
10

00
00

96
.9

5
28

.1
6

49
.8

0.
13

23
.8

9
15

.6
9

dy
na

m
ic

_m
in

3
33

51
3

47
94

5
99

.4
3

70
.9

1
12

.5
6

0
4.

96
3.

18
dy

na
m

ic
_m

in
2

34
15

2
52

73
9

99
.2

6
66

.1
1

13
.8

6
0.

29
5.

39
3.

08

st
at

ic
_m

in
5

24
36

0
74

15
2

96
.9

1
35

.8
6

41
.0

7
0.

3
22

.4
5

13
.8

9
st

at
ic

_m
in

4
27

66
9

94
36

3
97

.2
9

31
.3

5
48

.8
5

0.
27

18
.4

1
11

.6
2

st
at

ic
_m

in
3

26
21

2
99

94
5

97
.2

7
27

.9
51

.2
2

0.
7

22
.2

3
14

.5
6

st
at

ic
_m

in
2

25
67

7
10

00
00

97
.3

4
27

.3
1

54
.0

3
0.

86
28

.5
2

25
.7

3

cl
us

ty
_m

in
5

19
14

4
58

27
0

97
.3

8
34

.3
3

42
.1

4
0.

13
10

.1
5

5.
62

cl
us

ty
_m

in
4

23
16

4
69

35
0

98
.3

6
34

.1
3

44
0.

3
10

.5
6.

83
cl

us
ty

_m
in

3
22

71
3

77
48

7
97

.5
3

30
.2

2
47

.0
9

0.
3

16
.4

6
8.

25
cl

us
ty

_m
in

2
12

11
9

99
22

9
94

.8
9

13
.9

9
61

.9
8

0.
27

22
.2

2
15

.7
6

Ta
bl

e
7.

7:
C

lu
st

er
in

g
re

su
lts

fo
r

Ss
de

ep
se

le
ct

io
n

(s
ee

Se
ct

io
n

7.
2

to
un

de
rs

ta
nd

)

68



Name clusters [c] clustered [s] tiny [c%] tiny [s%] huge clusters [s%] severity [s%] strain [s%] strain (s N) [s%]
Clusty (all) 5310 100000 92.67 5.87 79.19 0.69 17.23 16.88
Clusty (no Yara) 18895 100000 97.83 19.68 64.17 1.3 7.92 7.44

ssdeep 12119 99229 94.89 13.99 61.98 0.27 22.22 15.76

Table 7.8: Clustering results for Ssdeep selection (see Section 7.2 to understand)

7.5.4 Evaluation

None of the subsets of attributes created a suitable clustering result. They were worse than
Clusty in all cases. Changing the algorithm of script generating groups of attributes could
improve clustering results so the method would be usable.

On the other hand, the clustering speed is very fast. It is several times faster compared
to Gradual selection method.

7.6 Experimental Selection
This method can be considered as an extension of the method used in the current Clusty. It
allows using multi-criteria for clustering instead of just a single one. It even allows defining
fixed attributes (e.g. it has an attribute with the same value) and a group of attributes
where at least some have to match (e.g. one of three attributes in a group has to match).
The drawback of the method is the same as in Clusty. The groups and rules have to be
selected manually based on experiments. In Clusty, there are many experiments behind
finding useful attributes and their position in the final list of useful attributes. What is
more, it is not a one-time activity. The experiments have to be made for each new attribute.

The selected groups and the description of clustering results is described in Section 7.6.1.
The speed test results and method evaluation results can be found in sections 7.6.2 and 7.6.3.

7.6.1 Clustering

There is a great number of possible groups of attributes. Therefore, the knowledge from the
Clusty was taken as a base. The rules used in experiments try to re-implement Clusty’s list
of attributes by extending a single attribute with others. The order of attributes remains
the same. Each attribute has to contain and is clustered by one more attribute with a lower
priority. The results can be seen in Table 7.9.

7.6.2 Speed Test

The speed of clustering was tested the same way as described in 7.4.4. Figure 7.9 shows
a relation between the number of samples and the duration of clustering. Figure 7.10 shows
a relation between the number of samples and the number of clusters.

7.6.3 Evaluation

The results can be seen in Table 7.9. The results are worse than the results by Clusty in all
aspects. There is a greater number of clusters, more small clusters, more samples are located
in small clusters, and there are fewer samples in huge clusters. All the classifications results
are better than both Clusty’s clustering results, but it can be attributed to the significantly
great number of clusters. However, the result can be improved in many ways by finding
better groups. The greater number of clusters is not unexpected. Since the attributes and
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Figure 7.9: Relation between the number of samples and the duration of clustering - Ex-
perimental selection

Figure 7.10: Relation between the number of samples and the number of clusters - Experi-
mental selection
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Name clusters [c] tiny [c] tiny [s] huge clusters [s] severity [s] strain [s] strain (s N) [s]
Clusty (all) 5310 92.67 % 5.87 % 79.19 % 0.69 % 17.23 % 16.88 %
Clusty (no Yara) 18895 97.83 % 19.68 % 64.17 % 1.3 % 7.92 % 7.44 %

experimental 27105 98.11 % 28.09 % 49 % 0.04 % 4.28 % 3.1 %

Table 7.9: Clustering results for Experimental selection (see Section 7.2 to understand)

the order are similar to Clusty’s, putting more attributes into condition should split some
clusters Clusty would create, i.e. there would be more clusters than Clusty without YARA.
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Chapter 8

Testing

The implemented tool is tested via a suite of unit, integration, and end-to-end tests. Besides
the description of tests for the implementation, the chapter also contains tests for meeting
the scalability and high availability noted in the requirements.

8.1 Rust Library
According to [21], “Rust’s type system and runtime guarantee the absence of data races,
buffer overflows, stack overflows, and accesses to uninitialised or deallocated memory”. It
provides a number of safety feature that similar languages do not have. The suite of unit
and integration test is used for testing expected behaviour. The tests are organised as
described in Rust documentation [18]. Total code coverage is approx. 97% according to
tarpaulin1.

Besides unit and integration tests, Rust also supports executing documentation exam-
ples as tests. Rusty contains just a single test like that. All tests can be run using cargo
test command. An example of the tests output can be seen in Appendix E.1.

The library uses annotation causing to warn about missing documentation string during
compilation. Based on that, there is a documentation string for each function, structure,
etc. The documentation for the library and all used dependencies can be built using cargo
doc --document-private-items and accessed in target/doc/rustylib/index.html.

8.1.1 Unit Tests

Unit tests are small and focused on a specific unit of a single module. A Rust convention
is to create a tests module with unit tests for each file. It allows testing even private
functions. Since the tests are in the source directory, the test module has to be annotated
with #[cfg(test)] in order to be not included in the library. Each test inside the module
is annotated with #[test]. Unannotated functions are not considered to be a test.

Unit tests (692 in total) in Rusty cover all structures (e.g., samples, Cluster, Rule),
traits, implemented clustering rules, and utilities. They test creation of instances, seriali-
sation and deserialisation, and all methods for structures.

1https://crates.io/crates/cargo-tarpaulin
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8.1.2 Integration Tests

Integration tests in Rust are made to be isolated from the tested library. They should
test only its public API as any other crate would do. Its purpose is to test how the code
units work together. The tests are not stored in src directory instead of in the tests
directory in the project’s root, next to src directory. Each of the files in the directory is
considered an individual crate. All auxiliary functions for integration tests are stored in
tests/common/mod.rs.

The purpose of splitting Rusty into binary and library is to allow testing its functionality.
Rust does not allow to test binaries. It is instead suggested to make it a library which will
be then called from a binary. A library can be tested using integration tests. The Rusty
binary contains only a necessary logic of console argument parsing. Everything else is a part
of the Rusty library. Even it is not needed to expose functions other than the one used in
the binary from the binary point of view, the library exposes a lot of code to be adequately
tested in the integration tests.

The integration tests (23 in total) cover all work with the database, from basics like
creating collections or indexes to moving a sample from one cluster to another and removing
the first if empty.

8.1.3 End-to-End Tests

End-to-end tests (8 in total) are made as Rust integration tests. They are stored in
tests/end2end.rs test file. They test the library as a whole by clustering a predefined set
of samples using various library configurations. It tests the whole process, including spawn-
ing of workers and communicating with the RabbitMQ server. The number of clusters or
a list of clusters sizes are some of the asserted statements.

8.2 Scalability and High Availability
High availability is implemented by allowing to run a number of instances in parallel.
Multiple instances also allow horizontal scalability. They were tested by clustering a set of
100 000 samples multiple times, each time using a different number of instances. Table 8.1
shows the configuration and results for each run. The experiments were performed in two
rounds. The first round used 16 workers per instance, and the second round used 32 workers
per instance. The results can also be seen in Figure 8.1.

We can see that Rusty is able to run in multiple instances which satisfies the high
availability. Further, we can see that the duration between round matches in the case
of the total number of workers matches. Also, we can see that the duration radically
decreased at the beginning and stabilised around 20 minutes. The results show that that
vertical scalability by running multiple instances is possible.
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Instances Workers/Instances Total Workers Duration [min]
1st round

1 32 32 46
2 32 64 22
3 32 96 19

2nd round
1 16 16 95
2 16 32 47
3 16 48 29
4 16 64 22
5 16 80 20
6 16 96 19

Table 8.1: Results of testing scalability and HA by running multiple instances in parallel.
The duration between round matches in the case of the total number of workers matches.
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Figure 8.1: Results of testing scalability and HA by running multiple instances in parallel
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Chapter 9

Evaluation

This chapter evaluates achievements and compares Rusty to Clusty. The requirements are
split into design-related and clustering-related features. The chapter evaluates all consid-
ered clustering methods, including the chosen method.

9.1 Design
The design-related features can be further divided into the features Clusty supports and
the features Clusty does no support.

9.1.1 Preserved Features

All design-related features of Clusty that had to be preserved are listed in this section.

Online and ad-hoc modes

Rusty can run in both modes Clusty supports. The first is continuous mode, where it
accepts a stream of hashes of analysed samples and cluster them as they arrive. The next
mode is ad-hoc mode, which operates over a file with hashes. It sends them for clustering
by publishing hashes to the RabbitMQ server. When connected to the analysis part, which
is not part of this work and does not currently exist, ad-hoc mode would not need read
hashes from the files because they would be sent for clustering by analysis part.

Reclustering mode

Re-clustering mode allows to re-cluster samples and clusters. Re-clustering of samples
means that already clustered sample can be sent for clustering again. It will be moved into
another cluster if any better cluster is found. Nothing will change otherwise. Re-clustering
of clusters mean sending all samples in the cluster for reclustering, and removing the cluster
if none of the samples have left.

Blacklisting of samples and clusters

The proposed clustering methods and the system of rules also support blacklisting. A sam-
ple can be blacklisted by recording its hash in the blacklist collection. A cluster can be
blacklisted as well. Based on the possibility to place a sample in the blacklisted cluster can
be determined whether a cluster is blacklisted or not. If the sample trying to create a new
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cluster can be placed into the blacklisted cluster using the same rule, the new cluster is
considered equivalent of the blacklisted cluster and therefore will not be created.

Universality

Rusty currently supports clustering of PE samples only, but it is made to be extensible. It
can support all categories Clusty supports. Adding a new category means implementing
new sample and creating set of rules for the category. Each category has its own set of
attributes, i.e. it can require another experiments to select the best rules or groups of
attributes.

9.1.2 Design Shortcomings of Clusty

All design-related shortcoming of Clusty that were expected to be overcame are listed in
this section.

Scalability

Clusty can be scaled vertically by selecting the number of workers. But it cannot be scaled
horizontally since it does not support running multiple instances.

Rusty is made to be both vertically and horizontally scalable by supporting specifying
number of workers and running multiple instances at once. Also, both ArangoDB and
RabbitMQ supports scalability. RabbitMQ is already used by Clusty.

High availability

Because Clusty cannot run in multiple instances of clustering within the same clustering
result, the program failure can lead to outage.

As mentioned in the previous section, Rusty is able to run in multiple instances. It
means that if running in multiple instances, failure of a single instance do not break the
whole clustering process. It will only lead to the lower throughput of clustering because of
the lower number of workers available.

9.2 Multi-criteria Clustering
Rusty cluster samples based on so-called rules. They are similar to Clusty methods. The
rules allow defining single-criteria methods, just like Clusty does, as well as using multi-
criteria methods. The idea behind the rules is to enable using YARA rules, digital signature,
and other single-criteria methods. They are special cases where the single attribute has
significantly greater weight than the others. For example, a sample with a YARA rule can
be clustered based on the rule regardless the rest of the attributes.

The rule is a generic structure providing an interface to define a value used for clustering,
a condition used to verify the rule usability, and a condition to confirm whether a sample
can fit into a cluster. The rule also needs to be assigned to one of the supported clustering
methods.

Experimental selection method has many possible configurations, i.e. there are many
possible groups of attributes and other constraints. The tested configuration, extending
Clusty’s attribute hierarchy, did not result in better quality clusters when considering all
aspects. More experiments can be done in the future to find suitable combinations of
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attributes resulting in better quality clusters. Nevertheless, manual selection of groups
based on experiments is very time-consuming. This limitation would show up again if
adding new attributes or even more when adding a new category.

A solution to avoid manual selection of groups is to automate the selection. One such
automation is proposed in this work. Ssdeep selection uses LSH ssdeep to find common
attributes of similar samples. The files are hashed using ssdeep hash, which is then used to
cluster samples with ssdeep hash similarity above a threshold. Each cluster then computes
common attributes among all its samples. These groups can serve as a base knowledge
about what similar samples tend to have in common. The algorithm proposed in this work
did not do well. There were much more clusters and the number of samples in the mixed
clusters was worse compared to Clusty. Besides that, The groups were not able to cluster
all sample in most cases. The notable advantage of having fixed groups is a very good
performance. It can cluster hundreds of thousands of samples in minutes.

The last method Gradual selection moves the finding of proper groups even further. It
requires two parameters (parameter 𝑇 was shown to be redundant) and a set of attributes
to be defined. The method is then able to find valuable attributes according to already
existing clusters. The need to fetch a greater number of clusters leads to a significant
deceleration compared to the previous two methods. It is the main drawback comparing to
Clusty and the other methods. The bitmask is shown to be useful since it speeds up the
clustering by a factor of two, but it still remains to be the slowest one. Though, there is
also space for other improvements to speed up clustering. For example, reduction of cluster
size can lower amount of transferred data. However, because of good clustering results, this
method was chosen to be used for now.

A comparison of clustering with Rusty (using Gradual selection) and Clusty can be seen
in Table 7.6. Rusty creates two times lesser clusters than Clusty while keeping a better
percentage of samples in mixed clusters than Clusty with YARA. Note that clustering
with YARA incorporates the knowledge of analysts. The higher number of samples in
mixed clusters can be caused by malware aliases and either missing or wrong classifications.
The percentage of samples in mixed clusters by severity (e.g. malware, clean) is always
better. This metric should be more stable compared to strains since there are not many
severities. Severity can be considered more critical than strain because severity reveals
whether a sample is a malware or not.

9.2.1 Preserved Features

All clustering-related features of Clusty that had to be preserved are listed in this section.
They are evaluated according to the chosen clustering method, i.e. Gradual selection.

Homogeneous clusters

The clusters are not fully homogeneous. But, there is significantly less samples in clusters
mixed by severity compared to Clusty. It is more than two times less compared to Clusty
using all methods, and more than four time less compared to Clusty without YARA. It
does not apply to the number of sample in mixed cluster by type and strain. In those cases,
it is worse than Clusty without YARA but better than Clusty using all methods. Severity
can be considered as the most important part of classification, because it is used in decision
if a sample is malicious or not. Because of that, Rusty can be considered to have more
homogeneous clusters compared to Clusty.

77



Unlimited cluster size

Clusty divides cluster into two categories: tiny and regular. Tiny clusters are clusters with
one to four samples. Regular clusters contain at least five samples. Only regular clusters
are classified and showed on the web. Rusty does not make such division. It treats all
clusters the same way.

Explainability

Each cluster has a fixed part which holds the common attributes. The attributes have to be
the same in order to place a samples into cluster. Clusty uses single criterion for clustering,
Rusty uses always multiple criteria.

Universality

The clustering method was tested on PE samples only. But it should also be usable for
other categories. It requires several experiments to be made in order to select a proper
subset of useful attributes and parameters.
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Chapter 10

Conclusion

This work aimed to design and implement the clustering part of the next version of Avast’s
internal clustering tool, Clusty. Clusty is able to identify, analyse, and cluster all incoming
samples online.

The next version was named Rusty. It overcomes shortcomings of Clusty while keeping
its key features. Rusty can run in continuous mode as well as in ad-hoc mode. It provides
scalability and high availability by supporting multiple instances. All external components
support these features as well. Rusty offers so-called rules which allow defining a condition
determining their usability for the currently clustered sample. Each rule implements one of
the supported clustering methods. This approach allows using, for example, YARA rules,
digital signatures, and others methods used in Clusty. They are among the most prioritised
methods because of the importance of the attributes. Blacklisting samples and clusters is
also possible. The implementation is tested via a suite of unit, integration, and end-to-end
tests.

None of the state of the art clustering methods have satisfied the desired requirements.
Therefore, three new ideas were proposed. They are based on the method in the current
version of Clusty and the standard methods. The results showed that the best method
according to the quality and the number of clusters is Gradual selection. However, it is
significantly slower than the other ones. Another method Experimental selection did not
have good results, but it still has potential since there are many possibilities to find suitable
groups and conditions. Because rules allow the coexistence of several methods, rules using
Experimental selection can be added in the future. The third method Ssdeep selection tried
generating groups of attributes and to cluster samples based on them, but none of the
experiments have shown good results.

The clusters based on Gradual selection were better than the Clusty in several aspects.
Moreover, the hierarchy they create can be used as additional knowledge revealing relations
between clusters. It can serve, for example, for discovering malware aliases or revealing
similarities among strains.

Rusty is made to be extensible. It allows defining new rules, categories, and even
new clustering methods. There is a possibility to improve performance of Rusty and im-
plemented clustering methods. Rusty can be extended by new clustering methods and
categories. Besides that, the remaining parts of Clusty, like identification or analysis, have
to be implemented in order to replace Clusty as the main clustering programme.
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Appendix A

Crate Configuration

[package]
name = "rusty"
version = "0.1.0"
authors = ["matus"]
edition = "2018"

[dependencies]
arangors = {version = "~0.4.6", features = ["reqwest_blocking"], default-features = false}
chrono = "~0.4.19"
clap = {version = "~2.33.3", features = ["wrap_help"]}
config = "~0.10.1"
futures = "~0.3.10"
futures-executor = "~0.3.13"
futures-util = "~0.3.13"
indicatif = "~0.15.0"
lapin = "~1.6.8"
log = "~0.4.14"
regex = "~1.4.4"
serde = "~1.0.124"
serde_json = "~1.0.64"
simplelog = "~0.9.0"
threadpool = "~1.8.1"

[dev-dependencies]
function_name = "~0.2"

[lib]
name = "rustylib"
path = "src/lib.rs"

[[bin]]
name = "rusty"
path = "src/bin.rs"

Figure A.1: Configuration of Rusty crate (Cargo.toml)
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Appendix B

Auxiliary Scripts

Figure B.2 shows an output of classify console script (see Section 6.4). It returns the
number of created clusters, the number of samples in clusters, and the number of samples
which were not able to fit in any cluster. Further, it returns a table showing a level of
mixture of clusters. Signs [s] and [c] reveal whether the number is based on samples or
clusters. Row TAG shows statistics according to classification in samples’s tag attributes.
Row TAG (s N) means that missing (None) classifications were not used in measurement.
Rows with CLUSTY are based on the classification of clusters in clustering result created by
Clusty. The table on the bottom shows a histogram of sizes of created clusters. The empty
cells were emptied due to lack of space in the page. They contain values similar to the
values in other cells.

anytree 2.8.0 tree generator
bson 0.5.10 BSON processor
click 7.1.2 argument parser
coloredlogs 15.0 logging
dash 1.19.0 web application
dash-cytoscape 0.2.0 web application
exrex 0.10.5 string generator from regex
graphviz 0.16 graph plotting
matplotlib 3.4.0 graph plotting
pika 1.1.0 sending AMQP messages
plotly 4.14.3 graph plotting
pymongo 3.11.0 MongoDB connection
python-arango 5.4.0 ArangoDB connection
requests 2.25.1 HTTP requests
tabulate 0.8.9 generating tables
tqdm 4.58.0 progress bar
verboselogs 1.7 logging

Table B.1: Used 3rd party Python packages
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Usage: classify [OPTIONS] DB_NAME RESULT_NAME

Options:
--show-samples / --no-samples Whether to show or to not show links with

hashes for samples.
--show-stats / --no-stats Whether to show or not to show aggregated statistics.
--show-top-clusters / --no-top-clusters

Whether to show or not to show 10 greatest clusters.
--skip-none-classifications / --do-not-skip-none-classifications

Whether to skip or not to skip
classifications with no value (None).

--filtering-methods / --no-filtering-methods
Whether to ignore classification of samples
clustered by specific method (e.g. YARA) in Clusty.

--filtering-source [tag|clusty|better|all] Source for filtering.
--filtering-classification [severity|type|strain|none]

Show only clusters with mixed selected
classification (default ‘none‘).

--save-to-file TEXT Store results into the file.
--load-from-file TEXT Load results from the file.
--clusty-result-name TEXT Clusty result name.
--help Show this message and exit.

Figure B.1: Console arguments of Classify package
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Appendix C

Division of Attributes into Groups

Attribute name Static Dynamic
all clustering all clustering

api_calls X
entry_point_address X
entry_point_bytes X
export_table_hash X X
icon_hash X X
import_table_hash X X
manifest_hash X
pdb_path X X
resources X X
rich_header X X
section_table_hash X X
symbols X X
version_info X X
watermark X X
uncommon_atoms X
uncommon_commands X X
uncommon_cuckoo_signatures X
uncommon_dependencies X
uncommon_events X X
uncommon_gvma_signatures X
uncommon_hosts X
uncommon_jobs X X
uncommon_mailslots X X
uncommon_mutexes X X
uncommon_named_sections X X
uncommon_pipes X X
uncommon_ports X
uncommon_registry_keys X X
uncommon_scheduled_tasks X X
uncommon_semaphores X
uncommon_timers X X
uncommon_touched_files X X

Table C.1: Division of attributes into groups used in the experiments
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Appendix D

Gradual Selection Experiments

PE
⌊__ 259529817: malware>dropper>None
| ⌊__ 260386682: malware>dropper>None
| ⌊__ 260497422: malware>dropper>None
...
⌊__ 259551502: clean>None>None
| ⌊__ 260540939: clean>None>None
⌊__ 259533675: malware>worm>None
| ⌊__ 259979616: malware>worm>None
⌊__ 259551438: malware>trojan>Swisyn
| ⌊__ 260099002: malware>trojan>Swisyn
⌊__ 259559462: pup>None>PCSpeedCat
| ⌊__ 259572797: malware>None>SpeedCat
| ⌊__ 259724713: malware>None>SpeedCat
⌊__ 259553704: malware>dropper>cloudeye
| ⌊__ 259625964: malware>dropper>cloudeye
| | ⌊__ 259771662: malware>dropper>cloudeye
| ⌊__ 259970879: malware>dropper>cloudeye
⌊__ 259532701: malware>trojan>None
| ⌊__ 259533800: malware>trojan>None
...

Figure D.1: A cluster tree showing their hierarchy. It shows ID and classification for each
cluster.
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Appendix E

Tests

Running target/debug/deps/integration-df50c264183a8943
running 23 tests
test test_create_index_for_collection ... ok
test test_add_result_to_results_if_not_exists ... ok
test test_create_collection_if_not_exists ... ok
test test_create_edge_collection_if_not_exists ... ok
test test_delete_clusters_relationship ... ok
test test_controllers ... ok
test test_cluster_blacklisting ... ok
test test_get_cluster_level ... ok
test test_get_clusters_by_rule_created_last_minute ... ok
test test_get_clusters_by_rule_created_last_minute_using_intersection ... ok
test test_get_clusters_by_value_using_intersection ... ok
test test_get_sample_by_hash ... ok
test test_get_clusters_by_value ... ok
test test_get_hierarchical_clusters_at_top_level_created_last_minute ... ok
test test_get_hashes_of_all_samples_in_result ... ok
test test_get_hierarchical_clusters_at_top_level_and_one_clusters_children ... ok
test test_is_sample_clustered ... ok
test test_sample_can_be_placed_in_cluster ... ok
test test_hierarchical_cluster_blacklisting ... ok
test test_single_controller ... ok
test test_sample_can_be_removed_from_cluster ... ok
test test_sample_blacklisting ... ok
test test_move_sample_into_new_cluster ... ok

test result: ok. 23 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in
0.97s

Doc-tests rustylib

running 1 test
test src/db/arangodb.rs - id_to_key (line 60) ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in
0.87s

Figure E.1: Example output of tests run
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Appendix F

Web Preview

Figure F.1: Web preview of cluster hierarchy. It shows 12 clusters, four of them is top-level.
The detail on the bottom of the figure shows information about cluster with ID 847751502.
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Appendix G

Content of Attached Media

The attached DVD contains the following directory structure:

README.txt
Document with a brief description of DVD content.

thesis.pdf
PDF document with master’s thesis.

thesis_print.pdf
Printable version of PDF document with master’s thesis.

thesis/
Source code of master’s thesis in LATEX.

rusty/
Directory with the source code of Rusty tool in Rust language.

scripts/
Directory with all auxiliary scripts used during the development.
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