
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

REAL-TIMEDETECTIONOFMALWARE CAMPAIGNS
DETEKCE KAMPANÍ ŠKODLIVÉHO SOFTWARU V REÁLNÉM ČASE

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. PATRIK HOLOP
AUTOR PRÁCE

SUPERVISOR Ing. LUKÁŠ ZOBAL
VEDOUCÍ PRÁCE

BRNO 2021



Brno University of Technology
Faculty of Information Technology

 Department of Information Systems (DIFS) Academic year 2020/2021

 Master's Thesis Specification

Student: Holop Patrik, Bc.
Programme: Information Technology and Artificial Intelligence     Specialization: Cybersecurity
Title: Real-Time Detection of Malware Campaigns
Category: Security
Assignment:

1. Familiarize yourself with the topics of malicious software (malware) and threat intelligence.
Focus on types of malware, division into families, ways of distribution, and spreading in
waves called campaigns.

2. Review internal Avast systems providing data and events concerning client detections.
Concentrate on the use of available information for recognition of malware campaigns for
threat intelligence purposes.

3. Design a system for real-time detection, visualization, monitoring, and reporting of malware
campaigns. Real-time means that the system should focus on current data, not on being run
retrospectively over old data.

4. Implement the system designed in the previous point.
5. Verify correctness of the implementation via a suite of unit, integration, and end-to-end tests.
6. Evaluate the implemented system with respect to its malware campaign detection abilities

and use for threat intelligence inside Avast.
7. Assess your work and discuss possible future improvements.

Recommended literature:
M. Sikorski and A. Honig: Practical Malware Analysis: The Hands-On Guide to Dissecting
Malicious Software, No Starch Press (2012)
Recorded Future: The Threat Intelligence Handbook, CyberEdge Group (2018)
B. Ellis: Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data, Wiley
(2014)
Internal Avast documentation
Additional literature as recommended by the supervisor or consultant

Requirements for the semestral defence:
The first three items of the assignment and a part of the fourth item.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Zobal Lukáš, Ing.
Consultant: Zemek Petr, Ing., Avast
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 19, 2021
Approval date: October 22, 2020

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/23731/2020/xholop01 Page 1/1



Abstract
This thesis deals with a real-time detection of malware campaigns based on the available
data of internal tools used in the Avast Software company. Its goal is to design and im-
plement a system that obtains and processes messages representing incidents detected at
clients. The system extracts and processes useful information and estimates if the threat
data are related to an emerging or continuous malware campaign based on various criteria.
The experimentation proves that campaign detection based on the carefully selected data
and metrics is possible. The implemented system is integrated with other internal tools
of the Avast Software company. This thesis also suggests steps for further improving the
detection process.

Abstrakt
Táto práca sa zaoberá detekciou kampaní škodlivého softwaru v reálnom čase na základe
dostupných dát z interných nástrojov spoločnosti Avast Software. Jej cieľom je navrhnúť
a implementovať systém, ktorý dokáže automatizovane zachytávať a spracovávať správy o
vzniknutých udalostiach a incidentoch u klientov, získať z nich potrebné informácie a vyhod-
notiť, či sa jedná o prebiehajúcu kampaň škodlivého softwaru na základe rôznych kritérií.
Experimentovanie potvrdzuje, že detegovanie kampaní na základe podrobne vybratých
parametrov a metrík je možné. Implementovaný systém je integrovaný pre spoluprácu
s internými nástrojmi spoločnosti Avast Software. Táto práca taktiež navrhuje možné
vylepšenia detekčného procesu.

Keywords
malware, campaign, antivirus, detection, real-time event processing, Avast Software

Klíčová slova
škodlivý software, kampaň, antivírus, detekcia, spracovanie udalostí v reálnom čase, Avast
Software

Reference
HOLOP, Patrik. Real-Time Detection of Malware Campaigns. Brno, 2021. Master’s thesis.
Brno University of Technology, Faculty of Information Technology. Supervisor Ing. Lukáš
Zobal



Rozšířený abstrakt
Cieľom tejto práce je preskúmať možnosti detekcie kampaní škodlivého softwaru v reálnom
čase na základe dostupných dát o incidentoch a detekciách rôznych hrozieb.

V úvode práce sa objasňuje dôvod, prečo je detekcia kampaní potrebná a na čo sa dajú
využívať získané informácie. Naväzuje naň druhá kapitola, ktorá podrobne popisuje prob-
lematiku prezentovanú v úvode. Touto oblasťou sa zaoberá threat intelligence, oblasť ky-
bernetickej bezpečnosti, ktorá umožňuje sledovať špecializovaným spoločnostiam a výskum-
níkom aktuálne hrozby, ich výskyt a pohyb na globálnej svetovej úrovni. Kampaňou sa rozu-
mie dočasne zvýšený výskyt konkrétneho typu hrozby, súboru alebo jeho rodiny. Správna
detekcia jednotlivých hrozieb, či už sa jedná o súbory alebo celé rodiny škodlivého softwaru,
do ktorých je možné hrozby podobnej povahy a funkcionality klasifikovať, umožňuje nielen
ich lepšiu detekciu a ochranu pred nimi, ale aj možnosť predpovede vývoja hrozieb.

V druhej kapitole sa rovnako objasňuje aj klasifikácia škodlivého softwaru a hrozieb do
jednotlivých typov, ktoré zdieľajú všeobecné vlastnosti a vzory správania, prípadne účel,
za ktorým bol škodlivý software vytvorený. Pre ich jednoduchšiu detekciu a konkrétnejší
popis je nutné typy klasifikovať do menších podmnožín zvaných rodiny škodlivého softvéru.
Vzorky v rámci jednej rodiny už majú veľmi podobné vzory správania a nízku variabilitu.
Daná klasifikácia medzi typy a rodiny umožňuje hierarchické rozdelenie hrozieb, ale v praxi
sa často vyskytujú hrozby, ktoré majú rôzne vzory správania a bolo by ich možné zaklasi-
fikovať do rôznych typov zároveň, preto je nutné predpokladať i túto variantu.

Nasledovné kapitoly vysvetľujú spracovanie správ od klientov, ktoré nesú informá-
cie o bezpečnostných incidentoch, detekciách a iných udalostiach. Dané správy môžu
byť agregované a ich prenos zabezpečuje infraštruktúrny systém pre spracovanie udalostí
Apache Kafka. Medzi typy správ, ktoré je pri detekcii kampaní v reálnom čase možné
využiť, patria dáta z reputačných systémov pre jednotlivé súbory, informácie o detekciách
súborových hrozieb, webové hrozby ako presmerovanie na nebezpečné internetové stránky
atď. Pre každý typ alebo skupinu správ v rámci jedného systému je vyhradený samostatný
kanál na prenos, kde je možné pomocou klientov správy odchytávať a spracovávať. Na-
priek tomu, že jednotlivé typy správ sú verzované a majú pevnú štruktúru, každý systém
môže v správach ponúkať iné dáta ako napr. názvy súborov, ich heše a prípadne konkrétne
informácie.

Za využitia informácii z predchodzích kapitol je možné navrhnúť službu, ktorá bude na
základe daných správ vyhodnocovať možný výskyt kampaní pre jednotlivé súbory a prí-
padne rodiny či rôzne typy jednotlivých artefaktov reprezentujúcich vlastnosti s bližším
popisom danej hrozby. Služba je nazvaná CaDet (Campaign Detector) a umožňuje nielen
ukladanie informácií o detekovaných kampaniach, ale aj tvorbu upozornení na kanáloch
pre komunikáciu v rámci spoločnosti, prípadne jej priebežné vyhodnocovanie voči voľne
dostupným informáciám o kampaniach malwaru zo sociálnych sietí a internetu. Služba
bola implementovaná v jazyku Python, verzovaná pomocou systému pre správu verzií Git,
využíva databázové technológie NoSQL pre ukladanie informácií pre jednotlivé kampane
a vďaka službe Docker poskytuje jednoduché možnosti nasadenia. Webové rozhranie dokáže
prezentovať výskyt detekovaných kampaní vo forme interaktívnych máp, zobrazuje grafy
aktuálnej aktivity sledovaných udalostí a poskytuje detailné informácie o danej hrozbe. Im-
plementovaná služba taktiež poskytuje API pre interakciu s automatizovanými skriptami
a inými analyzačnými službami. Celý proces je monitorovaný pomocou platformy Grafana
a umožňuje generovať správy s upozornením o detekovanej kampani v rámci komunikačnej
platformy Slack.



Služba CaDet bola otestovaná sadou jednotkových testov, ktoré majú za cieľ overiť
funkcionalitu jednotlivých funkcií a modulov bez externých závislostí, a integračných testov,
ktoré overujú spoluprácu jednotlivých modulov aj externých služieb. Pre správne overenie
reálnych scenárov a udalostí, ktoré možu nastať, bola implementovaná aj sada end-to-end
testov. Súčasťou vyhodnotenia funkcionality nepatrili len zmienené funkčné typy testov,
ale aj overenie správnej detekcie kampaní škodlivého softwaru voči informačným správam
zo sveta získaných zo sociálnych sietí i interných nástrojov. Celý proces experimentácie
a jednotlivých detekcií bol vyhodnocovaný priebežne na aktuálnych hrozbách v danom
období. Experimentácia potvrdila, že navrhnuté detekčné pravidlá sú schopné detekovať aj
kampane, ktoré boli reportované externými zdrojmi.

V poslednej časti sú diskutované možné vylepšenia služby a prípadné aktuálne ne-
dostatky, ktoré odhalil proces experimentácie. Záver práce vyhodnocuje aktuálny postup
a zhŕňa získané poznatky.



Real-Time Detection of Malware Campaigns

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of Ing. Lukáš Zobal. The supplementary information was provided
by Ing. Petr Zemek, PhD as a consultant of the Avast Software company. I have listed all
the literary sources, publications and other sources, which were used during the preparation
of this thesis.

. . . . . . . . . . . . . . . . . . . . . . .
Patrik Holop
May 17, 2021

Acknowledgements
I would like to thank the above-mentioned Ing. Lukáš Zobal and Ing. Petr Zemek, PhD
for their valuable advice and their time required for consultations of this thesis.



Contents

1 Introduction 3

2 Threat Intelligence 5
2.1 Goals of Threat Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Threat Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Dynamic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Threat Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 Severity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Malware Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Malware Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Malware Campaigns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1 Types of Malware Campaings . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 Historical Malware Campaigns . . . . . . . . . . . . . . . . . . . . . 11

3 Threat-Data Sources 14
3.1 Reputation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Anti-Rootkit Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Web-Threat Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Mobile-Threat Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Tagging System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 Clustering System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7 Graph Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Message Platform Apache Kafka 21
4.1 Architecture of the Message Platform . . . . . . . . . . . . . . . . . . . . . 21
4.2 Protocol Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Architecture of Threat-Data System Communication . . . . . . . . . . . . . 24

5 Cadet - A Real-Time Campaign Detector 25
5.1 Input Data and Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Classification and Campaign Detection . . . . . . . . . . . . . . . . . . . . . 28
5.3 Validation of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Monitoring and Alerting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1



6 Implementation 33
6.1 Used Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Event Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.4 Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.5 Campaign Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.6 Alerting and Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Experimentation 43
7.1 Experimentation Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.1.1 Internal Sources of Campaign Reports . . . . . . . . . . . . . . . . . 43
7.1.2 External Sources of Campaign Reports . . . . . . . . . . . . . . . . . 43

7.2 Campaign Detection Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2.1 Threat-Data Sources Evaluation . . . . . . . . . . . . . . . . . . . . 45
7.2.2 Detection Rules Evaluation . . . . . . . . . . . . . . . . . . . . . . . 48
7.2.3 Detection Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2.4 Real World Campaigns . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.3 Domain Feed Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8 Testing 57
8.1 Testing Interface and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.2 Unit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.3 Integration Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.4 End-to-End Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

9 Future Improvements 61
9.1 Property Classification and Artifacts . . . . . . . . . . . . . . . . . . . . . . 61
9.2 Campaign Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.3 Honeypots Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.4 Alerting and Report Generation . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.5 Scalability and Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.6 Event Processing and Bindings . . . . . . . . . . . . . . . . . . . . . . . . . 63

10 Conclusion 64

Bibliography 65

A DVD Contents 69

2



Chapter 1

Introduction

Digital threats have significantly evolved since their emergence together with their targets
and focuses. People no longer need an expertise or higher education to use various digital
technologies, computers or mobile phones on a daily basis. New vulnerabilities exploitable
by criminals are discovered every day [1]. A substantial amount of the reported cybersecu-
rity incidents is caused by malware (malicious software). In the past, computer programs
such as malware were commonly spread by copying binary executable files from one digital
system to another. For example, Brain – a program being considered to be the first com-
puter virus affecting MS-DOS, traveled via floppy disks [21]. Nowadays, a more frequent
way of spreading malware is by the Internet and the global web. Malware may not require a
physical file and its presence can be traced only in memory of the targeted machine. There
exist many various types of attacks that malware can exploit to achieve its goals, such as
spying or blackmailing.

Threat intelligence has emerged as a new cybersecurity area to monitor the activity of
malware and other digital threats in the world. Its purpose is to gather information on the
current threats and vulnerabilities, to classify them into categories for easier identification,
counter-defense and their detection and to predict new trends in cybersecurity [7]. It also
helps companies to inform their consumers and the general public about the techniques used
by criminals and what attacks and crimes customers might be vulnerable to. Examples
of the institutions that are responsible for threat intelligence and threat monitoring are
antivirus companies that try to detect the threats to protect their users and publish their
findings via public reports and blogs.

Keeping track of the current status of malicious files that emerge in the world is a hard
and complicated goal that requires cooperation among companies and the use of deployment
automation. Antivirus companies deploy various systems and tools to achieve high-quality
protection and minimize the false-positive decision rate (ordinary files incorrectly classified
as harmful) [29]. End-user products installed on the protected systems inform the com-
pany about detected files and incidents that have occurred. They further provide enough
information for the purposes of threat intelligence with strict respect to the privacy of the
protected users. The company might use a specialized architecture and systems to collect
all relevant data about such events and to process and evaluate them.

Incident reports provide much valuable information that can be used for threat intel-
ligence like attributes of the related files, gathered artifacts from the analysis, patterns of
behavior or their origin. These data can be analyzed to help the antivirus companies to
enrich their detection capabilities and protect more users as fast as possible against the
majority of the newly emerged threats. Real-time monitoring of such events can also give

3



malware analysts and security researchers a broad overview of how the threats spread. It
also provides information about various types of threats that are currently prevalent in the
world without the need for targeted information gathering from the past data.

The goal of this thesis is to analyze the above-mentioned events and their internal
sources of the Avast Software company, design and implement an automated system that is
able to gather and process such events. The designed system will be used to detect newly
emerged or re-emerged malware campaigns with a minimal delay to alert researchers and
employees of the antivirus company about the current threats. This helps to decrease the
time necessary for a mitigation of the threat and lowers the researcher’s need to look for
specific information retrospectively when it might be too late and the malware has already
infected more users than it was necessary.

The text is structured as follows. Chapter 2 further explains the term threat intelligence
and its applications, how it differs from the threat data and its connection to malware cam-
paigns. It also discusses the hierarchical classification of threats into severity, types and
families and provides examples for each category. Threat data are required for campaign
detection. Their sources consisting of internal analysis and reputation systems are de-
scribed in Chapter 3. All mentioned systems use a shared message platform Apache Kafka
to exchange produced messages. The used architecture with a closer explanation of the
platform itself is provided in Chapter 4. A general design of the system as well as its goals,
input data and outputs are described in Chapter 5. Chapter 6 sums up the details of the
implementation and technologies used by the service designed in the previous chapter. The
detection of campaigns is based on rules and conditions described in Chapter 7. It also
provides an evaluation of the service and detection statistics gathered during the experi-
mentation process. The process of automated testing using unit, integration and end-to-end
tests is discussed in Chapter 8. It is followed by a list of suggestions regarding the future
improvements of the service provided in Chapter 9. The thesis ends with a summarizing
conclusion in Chapter 10.

4



Chapter 2

Threat Intelligence

This chapter focuses on the topic of threat intelligence, its basic principles, goals and various
focus areas that the cybersecurity topic includes. It also explains the aspects of malware
campaigns, their possible interpretations and approaches used towards their detection. The
necessity of sample classification, its hierarchical structure into malware types and families
and various methods to achieve accurate results are also discussed and this chapter pro-
vides examples for each category. Accurate classifications and their ties to the detection of
malware campaigns are discussed together with the importance of campaign detection [45].
Examples of the large-impact historical campaigns are provided at the end of this chapter.

2.1 Goals of Threat Intelligence
The main goal of threat intelligence is to provide closer information about the threats that
have occurred or might occur in the future. The threats might be either active or mitigated.
Information about their authors, origin of the threat and ways of the threat mitigation can
be gathered by their analysis [7]. The field of threat intelligence does not represent a feed
or a specific list of the current threats that can be encountered in a digital environment.
Instead, it tries to connect the obtained threat data describing the individual threats and
obtain deeper knowledge in order to find relations and non-trivial dependencies and achieve
the above-mentioned goals to provide the required protection to both consumers and the
general public.

2.2 Threat Analysis
One of the most important goals of antivirus companies is to analyze executable binary
files, documents and other types of digital data to estimate the level of threat that they
represent, as well as to gather necessary threat data that can be used for further evaluation.
The analyzed files are commonly referred to as samples. Unique hashes of the samples,
such as Secure Hash Algorithm, are used for easier sample identification and information
exchange [29]. Samples can be analyzed either directly on the machines of end-users or
sent to the cloud that deploys complex analysis systems. The latter approach decreases
the processing load of the protected system. Its adoption highly increases mainly due to
the expansion of the Internet of Things and might result in a safer environment because
the sample is analyzed in an isolated environment [9]. There exist two main approaches
towards the sample analysis described below.

5



2.2.1 Static Analysis

Static analysis involves information gathering from a file without its execution or simula-
tion. Malware analysts or automated systems gather the properties of files by parsing the
binary data using a decompiler (software used for reverse engineering to assemble higher-
level information from the binary files) or disassembler that translates the binary code into
assembly language, the symbolic machine code using standards and documentation of bi-
nary formats [22]. For other types of files, there exist specific parsers [15]. During the
disassembling, file-format dependent data are shown. The data include file format headers,
information about the used API and libraries or even identifiers named by the author. Once
the data are parsed, analysts try to find malicious or shared patterns among the analyzed
files [22].

2.2.2 Dynamic Analysis

Dynamic analysis involves running the tested sample in a sandbox environment. The sand-
box environment is an isolated virtual machine, which, based on how the program behaves
in the emulated environment, generates an analysis report containing, e.g., sandbox sig-
natures [15]. Signatures generated during dynamic analysis are short labels generally de-
scribing the triggered behavior. They are mostly high-level tags describing a wide area of
functionality, for example, connected_to_internet. Other signatures are more specific, such
as banker_behaviour. Alternatives to sandbox environments are the emulators. While the
software in the sandbox is running natively, the emulator simulates most of the machine
instructions and runs the software step by step. Sandboxes are deployed as a part of mal-
ware research teams but also as a tool for behavioral analysis of samples directly at the
end users [22]. Dynamic analysis might involve analysis of the process memory, network
activity or file-system objects created in the environment during execution. Examples of
the artifacts gathered during behavioral analysis using an online tool VirusTotal1 are shown
in Figure 2.1. It shows the screenshot taken during the analysis and obtained system paths.

Figure 2.1: Example of artifacts gathered during behavioral analysis (VirusTotal)

1https://www.virustotal.com

6

https://www.virustotal.com


2.3 Threat Classification
Based on the information and data obtained during both types of sample analysis described
in the previous sections, an analyst or automated system can derive an abstract or precise
classification of the potential threat. For various applications, different levels of classifica-
tion abstraction are required. For example, to detect any sample and perform its removal
from the infected system, only a knowledge of whether the file represents any general threat
is required. A more precise description might be required in order to further investigate
the incident and collect the related intelligence. For this reason, a hierarchical model of
threat classification with various levels of abstraction is commonly used. The classification
can be estimated either by malware analysts or automated expert, detection or machine-
learning systems [22]. Because each classifier might use different data or consider various
aspects, classification of the same sample might vary based on the classifier’s metrics, such
as accuracy [23]. Various levels of this hierarchical model are described below.

2.3.1 Severity

Severity represents the most abstract level of threat classification and provides information
only about the general intention of the sample or whether the sample represents any threat
at all. The classification is split into four main categories described below and sorted by
level of threat they represent. However, various companies or classification models might
use only a subset of the listed categories [15].

• Clean – Clean samples represent ordinary files, documents and other samples without
any malicious activity or threat. It is the most prevalent sample category among the
observed samples. This category includes commonly used web browsers, multimedia
applications, text editors, etc.

• Tool – Tools are clean samples that are used to perform a specific type of activity
that might be misclassified as suspicious or malicious under certain circumstances.
Example of such a process is the mining of digital currencies, which is a legit activity
that can be performed by malicious websites and samples without the user’s consent.

• PUP – PUP (an abbreviation of potentially unwanted programs) fills a grey zone
between clean and malicious samples. These programs do not represent any direct
threat to the user, but they might cause inconvenience or rely on trickery to perform
unwanted actions, such as installation or advertisement of third-party software.

• Malware – Malware (malicious software) represents samples that intent to harm, de-
stroy or alter user’s data without their consent, perform an illegal or highly suspicious
activity and should be removed, isolated or handled otherwise to mitigate the threat
they represent.

Malware often uses various sets of evasion techniques and methods, such as packing or
encryption, to disguise itself as a clean sample to avoid any detection and neutralization by
detection system or antivirus scanners [10]. Furthermore, any non-malicious sample might
be a target of infection by certain types of malware that transforms it into malware itself,
e.g., by injecting its malicious code into a clean executable file.

7



2.3.2 Malware Types

Severity is a satisfactory level of classification for detection of any threat, but it does
not provide any closer information about the malicious activity of the malicious sample.
This information might be used by security specialists in order to mitigate the threat,
for purposes of threat intelligence or by malware analysts to locate and identify malicious
sections of analyzed samples [39]. For these reasons, the malicious sample can be further
classified into more specific malware types that represent the overall malicious activity
performed by the sample, e.g., infection of clean samples, encryption of personal data to
obtain a financial ransom or gathering information about the user [39]. Examples of the
most common types of malware are described below [22].

• Trojan – Trojan (Trojan Horse) is named after an ancient Greek tale describing the
statue of a wooden horse that was used as a gift handed to enemies of Greece to enter
the city of Troy. In reality, the statue was a disguise for the warriors of an enemy
faction. Once the statue was moved into the city, soldiers have started to plunder
the city. Trojans use a similar technique and act as clean samples, but they perform
malicious activities in the background without the consent of the user. This type of
malware is also used as a general malware type if no precise classification is available
[22].

• Worm – The main goal of the worm is to spread via the connected network, mail
attachments, etc. They might carry a malicious payload or be used to set up a
botnet. Worms do not need any physical file to spread and function in the memory
of targeted systems, making them harder to detect. One of the first worms was called
Morris worm, spreading via remote execution and exploiting weak passwords of the
services [25].

• Spyware – Spyware is used to spy and gather information about its victims, targeted
systems and to send the obtained data to its creator. This category includes programs
that try to steal credentials or keyloggers that collect all pressed keystrokes.

• File-infector – File-infectors spread by infecting a legitimate software. This can be
achieved by copying or injecting its own code or malicious sections into the targeted
file. Code injection can also be performed by parsing and evaluating untrusted input
of the application.

• Dropper – Droppers are used to spread, download, unpack, install or otherwise
generate a different malicious sample on the targeted system. Their goal is to hide
the carried malware and obfuscate the way of infecting the system.

• Ransomware – Malicious type with an increased prevalence in recent years that
encrypts, removes or otherwise blocks access to the victim’s data by blackmailing and
requesting some form of ransom. Ransomware authors often request a payment in
cryptocurrencies to anonymize their identity [41].

• Bot – Bots are automated programs to perform legit tasks, such as web scraping
or data gathering. However, they might be used for malicious intentions to create
a centralized or decentralized network of connected machines called a botnet. Bots
are synchronized among themselves and wait for the execution commands from their
command server or a certain event that triggers their action [17].

8



Classification of samples into malware types is not a standardized process across the
world and the set of the detected types might differ in the used classification model. More-
over, the malicious sample might perform multiple malicious activities and as such is clas-
sifiable into multiple types and categories. Only a subset of detection systems supports
estimation of more than one type and the category is chosen by the most important or
obvious activity performed by the sample and detected by the classifier or analyst.

2.3.3 Malware Families

Malware types describe the general activity of the malicious software. However, each type
can be split into variants or families representing a more specific classification of the sample.
Families provide specific information about the performed activity. However, malware
family might also be derived based on the malware creators, time period of its activity,
relations with other families, etc. Malware families can be further divided into variants that
represent specific aspects of the family, but they are typically not supported by automated
classification systems due to lack of data required for training or a high number of possible
classification classes. New names of the discovered variants and families are chosen by the
companies and analysts that have identified them and their count is significantly higher
than the general malware types [22]. This might cause inconsistencies, misclassifications
and problems regarding information exchange because multiple antivirus companies might
use different synonyms for the same malware families and variants [22]. Representative
examples of malware families are described below [39].

• Dealply – It is an adware that installs the advertisement popups to a targeted web
browser.

• WannaCry – Ransomware that has emerged in 2016 and has infected more than
300 000 users across the globe [6].

• Zeus – Type of trojan that tries to steal user credentials and confidential information
from the victim. It spreads via phishing schemes and drive-by downloads.

• Emotet – This family has slightly changed its behavior from the past because it
operates mainly as a banking malware organized in a cooperating botnet. Nowadays,
the main observed purpose of this family is content delivery [4].

• Wabot – Wabot is a type of worm that spreads via IRC (Internet Relay Chat) and
can change the system settings of affected clients.

• Swisyn – This type of trojan was first observed in 2009. It initiated connections to
malicious websites and committed identifiable registry changes. It serves as a dropper
for other types of malware.

• GandCrab – According to ZDNet, the name of this ransomware is derived from
the online name of its creators, who represent themselves as Grab or GandCrab.
GandCrab does not affect machines located in Russia and follows the Ransomware-
as-a-Service (RaaS) marketing model [4].

• Mirai – Mirai is malware targeting Linux systems. The compromised systems are
turned into a unified botnet for large-scale attacks. It also affects IoT devices, such
as cameras and home routers.

9



• XMRig Monero – This malware is targeting vulnerable systems for the purposes
of crypto mining Monero coin. It uses the resources of the targeted machines, also
affecting Windows and Linux servers. This family was part of a large-scale campaign
impacting over 15 million people across the globe [35].

2.4 Malware Campaigns
Malicious software of the same family tends to spread in waves called malware campaigns.
This might happen soon after emergence of the malware, after a new vulnerability is dis-
covered or due to other similar reasons. Detection systems report an increased rate of a
specific type of detections tied to the given malware family [46]. WannaCry campaign in
2016 might serve as an example of a campaign in which more than 300 000 computers were
infected by the same malware family in a short period of time [6]. One of the goals of threat
intelligence is to detect, classify and inform about malware campaigns. There exist multiple
interpretations of what a malware campaign is. Detection or even prediction of malware
campaigns before they happen, e.g., interception of botnet communication, is crucial in a
fast response for endpoint detection.

2.4.1 Types of Malware Campaings

Malware campaign is a general term and provides multiple approaches to the given problem.
Campaigns might not be tied only to a certain family that has spread in a wave but also
to property or a specific sample. Figure 2.2 shows changes of the malware family trends
in the given time window obtained from reports of an online sandbox AnyRun2. However,
data from sandbox might be altered by scans of artificial, test and theoretical samples not
prevalent in the real environment. This thesis focuses on data from the end-user stations to
avoid this problem. Types of malware campaigns that are analyzed as a part of this thesis
are listed below.

• Sample campaigns – This type of campaign represents an increased activity and
prevalence of the specific sample that is commonly represented by its hashed contents,
such as SHA-256.

• Family campaigns – Family campaign is tied to a certain malware family. It might
represent an aggregation of all sample campaigns classified as the same family or
as a separate wave not tied to any sample campaign. The latter approach is more
general because samples that are not themselves part of any sample campaign can be
recognized as a part of the campaign of their corresponding family.

• Artifact and fileless campaigns – Each sample has a set of static or dynamic
properties that can be scanned, analyzed or detected. These properties are either
imports, sections and other values obtained during static analysis of the sample, or
named objects and web domains that the sample tried to access when it was executed
in a monitored environment. Such properties are called artifacts and their activity
can be monitored in order to be evaluated, e.g., an increase of requests towards a
specific web domain used to distribute malware. Some values can also be obtained
from monitoring user activity, such as domains.

2https://any.run/malware-trends/

10

https://any.run/malware-trends/


Figure 2.2: Changes of malware family trends in a public sandbox AnyRun

2.4.2 Historical Malware Campaigns

This section provides an overview of the selected malware campaigns that occurred in the
past with a large-scale impact on the affected systems. The main events are described in
chronological order for each campaign. The counter-defense reactions of the cybersecurity
researchers are also discussed.

Wannacry Ransomware Campaign (2017)

The WannaCry ransomware campaign was a worldwide cyberattack. This cryptoworm
malware started its activity in May 2017. The main targets of this campaign were machines
with Windows OS. The infected users were requested to pay a financial ransom in order to
decrypt their data. This campaign was estimated to affect approximately 300 000 devices
across 150 countries. The initial attack is believed to happen on May 12, 2017 [50]. The
first observed samples have originated in Asia. During the initial day of this campaign
were reported over 230 000 infected computers. The majority of the infected devices were
machines with the operating system Windows 7 [6]. The official support of this operating
system ended in 2020 despite its popularity among users.

The substantial spread was partially mitigated after the discovery of a hardcoded switch
directly within the malware [50]. In the initial version of WannaCry malware, the user data
encryption was conditioned. The files were encrypted only when the ransomware was unable
to connect to a specific domain. The security researchers used a mechanism called DNS
sinkhole to monitor the queries generated by the malware [26]. DNS resolver obtains false
results from the server that has blacklisted the given domain. The server is able to monitor
the number of queries and the provided result is a substitute pretending the be the original
domain. This allowed the analysts to observe the sample count and to stop the malware
from spreading. The second switch was discovered on May 14 in a new variant of this

11



family, but the discovery happened the same day the new variant was observed. Other
similar attempts were observed during the campaign.

In a counter-response, hacker organizations tried to attack the substituted domain to
slow down the progress of the investigation. A large botnet was organized by Mirai; a
malware family described below [42]. This purpose of the formed botnet was a DDoS
attack, but the domain was consequently protected. The servers were to handle much more
traffic and the attempts to destabilize the domain have failed. Cybersecurity researchers
also attempted to recover the encryption keys. It was discovered that the keys might be
recovered under specific conditions. Examples of the conditions were that the system was
not rebooted and the ransomware process was not terminated otherwise. The encryption
API did not completely wipe the memory, and prime numbers used for encryption could
be obtained from the memory dump. The main response ended four days after the start
of the campaign, but the WannaCry samples are still being observed by threat-intelligence
researchers [3].

Mirai Botnet Campaign (2017)

A new campaign of Mirai Botnet has emerged on March 25, 2017 [43]. This was not an
emergence of a new threat because Mirai botnets were already used for DDoS attacks in
2016 [42]. A new rising trend of command injection techniques used by this variant of
malware was spotted by cybersecurity researchers. The formation of a new botnet was
confirmed by the analysis of spread samples and collected events.

The malware name Mirai was formed based on a tool that used to scan various IoT
devices with weak or default login credentials [37]. The credentials were used to connect
to the device, and this led to post-exploitation and organization of the affected devices
into a large botnet. Botnets created by malware families such as Mirai use Command and
Control server (C&C) for distribution of information and commands. The server listens
for responses from individual bots that scan the network for a potential new device to
be exploited. If such device is found, the bot reports the IP address of the device to its
command server. The affected devices continue normal activity and operations until the
bot receives a specific command.

The countries of North America and Japan were among the affected destinations by this
campaign [43]. The samples that were part of this campaign had cryptomining modules
built in, which allowed the exploitation process to use the resources of the infected devices
for mining. Furthermore, they also included DDoS components that allowed the botnet to
cooperate in a synchronized attack. The vulnerable service used to spread this family was
Telnet with a default port 23.

Ryuk Ransomware Campaign (2020)

In September 2020, security researchers observed a group of related phishing campaigns [18].
This required the involvement of incident response teams to mitigate the emerged threats.
Ryuk is a ransomware that is able to bypass multiple anti-malware measurements. If
necessary, it is also able to disable a computer network. An analysis of the techniques and
tools used by Ryuk’s authors was provided by Sophos Managed Threat Response team [18].

Ryuk did not pose a newly discovered threat. It has been repeatedly detected since
2018 [4]. The British security software and hardware company Sophos reported a low
number of detections in the first half of 2020. However, the new campaign, which took
place in September 2020, represented the next evolution of Ryuk. It used new techniques

12



to target a vulnerable network and deploy its ransomware modules. The spread was caused
by a malicious document that was able to execute another malicious executable that served
as a loader. The Buer Loader used was different from the one used by Ryuk in the past,
relying on Emotet. Ryuk dropped other malicious files that served as a connection to
the attacker’s hosted C&C server, allowing the attackers to continue the exploitation of
the company’s internal network. It also used various techniques to distribute its files to
discovered servers, such as Remote Desktop Protocol (RDP) clipboard transfer [18].

13



Chapter 3

Threat-Data Sources

This chapter describes the sources of threat data that are obtained during various types of
analyses discussed in the previous chapter. Threat data are shared via a common message
platform and are the main source of information regarding malware campaigns. The data
needs to be processed and evaluated in order to detect and visualize malware campaigns
in this thesis. A summary of internal detection systems and specific parts of antivirus
products that are used for analysis, scanning, incident handling and processing of the
obtained data are also presented in this chapter. The mentioned systems, as well as the
process of analysis, are described in general and abstract terms because most of them are
the intellectual property of the Avast Software company. Their description is based on the
internal documentation of the company [30, 32, 45, 46].

3.1 Reputation Systems
The first source of data described in this chapter is multiple reputation systems. Each
system is focused on a different type of sample. A reputation system is an application
or algorithm that allows rating all evaluated entities based on various rules in order to
build trust and reliability in the rated entity. Reputation systems that evaluate and rate
individual samples, as well as distribute the obtained information about them, are used for
the purposes of threat intelligence and managing malware detections.

Among the basic information that each reputation system in the Avast Software com-
pany processes, there are the date and the time of emergence of the samples and a total
amount of their detected and confirmed occurrences in the end-user clients, referred to
as prevalence. Prevalence of the occurrence detected in other analysis systems, such as
the sandbox deployed in the client application, is stored and handled separately from the
prevalence of sample detected by common scanners on the target system. A user can re-
quest analysis of suspicious files in the sandbox or such analysis can be triggered by an
execution of an unknown sample, about which the client has no information. The current
classification of the sample is also distributed via the reputation system.

The reputation system handles two different classification metrics. The first type of data
are the results of complex analysis in the company, and the second is a first-line classifier
deciding if the sample requires any further analysis. The latter classifier is less precise the
former. However, its results are useful if the results from the complex analysis are not
available.

14



The prevalence of the data affects the way of how the analysis systems might make
their classification regarding classified threat-level. Samples with a very high prevalence are
distributed among many users across the world and often represent clean severity. When
a scanner encounters a unique file that has a very low prevalence, the file might be sent
to the cloud or take a longer time for execution of deeper analysis than the time required
for analysis of more prevalent samples, in which the system puts more trust. Such samples
with a very low prevalence are referred to as loners. If the sample is prevalent, there is also
a higher chance that a valid classification already exists for the given sample.

Because the amount and variety of evaluated samples processed among all client applica-
tions of the company is significantly high, the reputation systems are designed as distributed
platforms with multiple end nodes, to which the client can be connected in order to share
information about the newly observed sample or executed analysis. Each reputation system
is tied to a certain file format, about which the system collects necessary information.

In this thesis, the data from two independent reputation systems are used, one for PE
file format commonly used on Windows operating system and the second one for APK files
supported by Android on mobile devices [8, 24].

3.2 Anti-Rootkit Systems
Anti-rootkit systems are designed to mitigate the risk and fight the malicious software
classified as a rootkit, the purpose of which is to prepare the infected environment for
further infection by another type of malware or to hide the existing deployed malware,
acting as an environmental management program. Rootkits operate on low levels of the
operating system and try to hide the running processes, files of the filesystem or alter
registries to prevent the detection. Anti-rootkits use drivers to access the lower-level layers
of the operating system similarly to the rootkits as well as other techniques to counter the
rootkit activity.

Each incident and the generated detection by the anti-rootkit system of the Avast Soft-
ware company contains an identifier of the sample that has caused the incident, commonly
its SHA-256 hash. Among the other provided data, there is the reason for the detection
incident, e.g., suspicious process behavior, meta-data of the sample and the process context,
such as its parent process path and the related registry key.

3.3 Web-Threat Systems
The number of Internet users is constantly rising and the number of web threats as well.
The topic of web threats has become even more important with the rise of the Internet of
Things, because such systems are often targets of attempts to create botnet networks that
might be used for DDoS attacks or are vulnerable to such attacks themselves [28]. Attackers
use more and more sophisticated techniques to distribute or execute all types of malware
over the Internet, web pages and redirects. Files and executable samples can access the
domains similarly as the users do via web browsers and use it for malicious purposes or
malware distribution.

The end-user client software of the antivirus products tries to monitor web threats
and report the encountered incidents. A user does not need to access a malicious website
directly because even an infected web or malicious link might, through multiple redirect
attempts, connect to the malicious websites that are parts of the redirection chain. Analysis

15



of the whole redirection chain is complicated and requires much detected data which can
be used for purposes of threat intelligence. Among such data, there are attempts of cross-
site redirection and cross-site request forgery, detections of suspicious HTTPS requests,
suspicious cookies and verification by a list of blacklisted websites that have been marked as
phishing or malicious in the past. Analysis of target IP addresses is also required because an
attacker can use redirection for man-in-the-middle (MITM) attacks. This can be achieved
by monitoring the network activity and intervention in case of suspicious traffic.

Domain Monitoring

Similarly to the activity of reputation systems described in Section 3.1, web-protection
systems process domain reputation to prevent access to any of the blacklisted or malicious
sites. The rating of the analyzed website is connected with multiple reputation ratings of
other properties, such as the rating of binary files downloaded from the domain. If the
website distributes malware, it can be marked as dangerous as well. The system needs
to maintain the list of forbidden sites that is constantly updated and allow analysts to
remove the detection or change the classification in case it was evaluated incorrectly or it
is a false-positive result.

Network Protocol Monitoring

Network monitoring systems and web shields often monitor various network protocols in
order to ensure that the requests are not targeting domains with a bad reputation. This
does not affect only older protocols like HTTP, but newer ones as well, e.g., QUIC developed
by Google to provide less connection overhead [34]. When the application tries to connect
through a certain protocol, the monitoring system can collect the same information as the
process monitor, such as a parent process or the hash of the sample that has initiated
the connection. Requests of network protocols are also evaluated based on the related
certificates that might be signed, invalid, or revoked, on headers of the requests, etc.

DNS (Domain name system) is also vulnerable to malicious intentions through data
tunneling and it is dangerous to access the DNS servers blacklisted by any resolver [54].
Through DNS monitoring, the analysis systems are able to quickly evaluate the accessed
server and its reputation to provide their feedback, terminate the connection or update the
blacklist if necessary.

3.4 Mobile-Threat Systems
Mobile devices are vulnerable to general web threats described in Section 3.3, but also
to platform-specific exploits. Installation of the third-party software obtained from an
unknown or unverified source can lead to the execution of malicious code on the device
as well as accessing a malicious website. With the rising number of mobile users, major
antivirus companies often provide a mobile client to extend the range of their protection
and obtain reports about the incidents that has happened on the systems of mobile phones.
This thesis focuses on data provided by an Android client.

When an incident happens on a mobile device, monitoring client can provide multiple
data about the malicious APK that has caused the incident, such as the name of the package,
its version and meta-data, system flags for the given application, its granted permissions
or information about the operating system as well as the current reputation of the sample

16



in the time of the incident. Associated certificates of the application can also be obtained
from the incident report. However, Android devices do not tend to verify a whole chain
of certificates with a root certification authority as other file formats like PE designed by
Microsoft do [8, 24].

3.5 Tagging System
As opposed to the systems described in the previous sections, the internal tagging tool of
the Avast Software company called Tagger is an analytical tool not directly communicating
with the end-user client applications installed by the users of the antivirus company. It
was designed as a high-performance platform for malware research purposes. Its main goal
is to store and provide tags for samples, detection strings and other objects [44]. The
tag represents a tuple consisting of severity, type, family, a strain of the family and the
target platform. Tagger continuously evaluates and updates the tags based on partial
classifications and detection statistics provided by other internal systems and can serve as
a main source of classification for other systems. It is also able to determine the confidence
of the classification, based on which was the tag generated. Low-confidence classifications
are less reliable than tags with high confidence. This system supports multiple file formats
and acts as a general, robust and trusty classifier as well as the source or retrospective
evaluations based on accessing past data to generate various types of reports. As the
main identification for a gathering of classification tags, SHA-256 hashes of the samples are
used [44].

Detections and Detection Definitions

One of the objects that Tagger is able to evaluate and create tags for are detections and
detection definitions. Detection definitions represent a summary of the defined conditions
and rules that the given sample needs to have in order to be detected by them [45]. It
is a common way of endpoint malware detection [44]. Detection definitions have a unique
name and also contain information about its origin, e.g., an algorithm of their creation. For
example, detection definitions can be obtained by hashing multiple sections of the binary
sample. Definitions can be created for non-malicious files as well, so they require a tag
providing closer information on the subject of the detection. Once the conditions provided
by definition were met, the result is called detection.

Detection, also represented by a structured string, contains specific values obtained
or calculated by the detection algorithms that can be parsed to gather more information
about the incident and sample [44]. Figure 3.1 shows example of the detection string that
includes information about the platform Win32 (Windows OS with a 32 bit architecture).
It was generated as a generic malware detection (Malware-gen), it shows the internal type
of detection (PE3) and a more precise classification estimated to be the Trojan malware
type (troj).

Win32:Malware-gen|PE3-F4A5CB560011BB85FE9A584D916D51A6|troj

Figure 3.1: Example of Avast Software detection string

17



3.6 Clustering System
Clusty is the internal clustering system used at Avast Software to cluster files based on
their shared properties obtained during static and dynamic analysis. This service collects
up to 1 000 000 new samples from a variety of internal sources on a daily basis. It groups
the similar analyzed samples into clusters. Clusty uses its own internal classifier or other
external sources like the parsed detections of multiple antivirus products to estimate the
final classification of the whole cluster [32]. The analyzed sample may be sent to other
internal analysis tools, such as sandboxes, for deeper analysis if no report is currently
available. Analysis tools used during the sample processing are determined by various
factors like the file format of the sample. Figure 3.2 shows an example of the generated
cluster, the list of shared properties of the individual samples and the final classification by
antivirus detections.

Figure 3.2: Example of the generated cluster

Once the most important data about the file are gathered, the clustering process is
initiated and the most suitable cluster is found for the given sample. Specific conditions
need to be met in order for the sample to be clustered. Each sample can be assigned to a
single cluster. The properties of the cluster need to be updated once the suitable cluster
was found and the sample was assigned. The sample might introduce new properties or not
use the ones that previously represented the whole cluster, such as sections and names of
the imported libraries. Each property has predefined importance that is taken into account
during the clustering process. The sample is more likely to be clustered based on the
property with higher importance.

Priorities on the individual properties are determined by experimentation and expert
feedback of the malware analysts. More generic properties are less important than the
prioritized ones. The list containing the four most important properties taken into account
of the PE files, except the validity of the file and matching rules used for detection and
classification, are:

1. A verified digital signature

2. Mutexes (100% match)

3. Schedules tasks (100% match)

4. Named sections (100% match)

18



A verified digital signature has a higher priority than the named sections. As is shown
in the case of mutexes, scheduled tasks and named sections, clusters created by these
properties require all samples to have the same values and achieve a 100% match in order
to be in the same cluster.

3.7 Graph Database
If the modeled system abstracts a set of interconnected nodes, it can be formally repre-
sented as a graph 𝐺, where 𝐺 = (𝐸, 𝑉 ). The graph is defined by the set of edges 𝐸 that
interconnect individual vertices and 𝑉 represents the set of vertices as individual nodes of
the graph [52]. This formal representation allows the storage of data into a graph database
operating over the designed graph topology. This type of topology can help to efficiently
store the interconnected data and decrease the time and resources required to query the
related data. Graph databases are a subcategory of NoSQL databases that follow the graph
topology scheme [52]. Furthermore, both the vertices and edges can be represented by their
weighted values as degrees and edge weights, respectively.

Artifacts and properties of the analyzed samples can be represented by a corresponding
graph topology. Because all data are stored as partial nodes of the graph database and
the relationships between objects as edges, the topology provides additional information
about the activity of each node. The node represents a particular property or artifact of
the sample that is stored in the database. Two nodes are connected if their values were
observed during a single analysis or an event. For example, a relationship between the
reported sample from the clients can be represented by a weighted edge between the unique
user identificator (GUID) and the hash of the given sample. The weight of such an edge
represents the number of reports for the given sample by the specific user [30].

Example of such graph is shown in Figure 3.3. Nodes A and B represent unique users.
Nodes C and D are samples reported by these users. The degree of node D is equal to three,
because it has a connection with three other nodes (two input and a single output edge).
However, the weighted value of input connections is fourteen, because user 8abc2c reported
six incidents involving the sample 0DFF12A and user 12bf5a eight incidents.

GUID: 12bf5a Sample: 0AC56FB:Reported
Weight: 5

Sample: 0DFF12A

:Reported
Weight: 8

:Dropped
Weight: 2

GUID: 8abc2c :Reported
Weight: 6

Node A

Node B

Node C

Node D

Figure 3.3: Example of the graph stored in graph database

Relationships between various artifacts and samples are stored in an internal graph
database of Avast Software continuously updated by an internal service that provides an

19



interface for obtaining information about connections between the properties and sam-
ples [30]. The internal Avast service provides an interface to query the database via an API
or directly by the composition of database queries.

Cypher Query Language

Cypher is a declarative query language the allows to query graph databases designed by
a company Neo4j [53]. It allows to expand the individual stored nodes, obtain any non-
trivial relation or find connections between the related nodes. This can be used to obtain
information about the users that have reported an incident related to the given sample,
obtain the list of samples that have accessed a certain domain, etc. Example of a Cypher
query is shown in Figure 3.4. A keyword MATCH represents a searching statement for an
existing node, label or a relation. RETURN specifies the properties that should be obtained
and returned by the query. The shown query can be used to obtain up to ten domains that
have been accessed by the specified sample represented by the hash 0AC56FB.

MATCH (:Sample name: ’0AC56FB’)
-[:ACCESSED]->(domain:DOMAIN)
RETURN domain LIMIT 10

Figure 3.4: Example of Cypher selection query

20



Chapter 4

Message Platform Apache Kafka

Data transfers and information sharing between independent services can be realized by
multiple approaches, such as API endpoints. Each approach has its advantages and dis-
advantages for specific situations and design patterns. In this chapter, the architecture of
a streaming platform Apache Kafka is discussed. Kafka serves as a backbone of the in-
ternal communication between various services, reputation and detection systems that are
described in the previous Chapter 3.

4.1 Architecture of the Message Platform
This section describes the basic architecture of the Apache Kafka streaming platform, its
principles and the advantages of its usage. Kafka is an open-sourced project1 providing high-
performance data pipelines and streaming analytics initially developed at LinkedIn [40].
The main idea of a message streaming platform is to replace a high amount of databases
that serve to store data with an architecture that is able to analyze and process continuous
data flow that allows easier distribution of the data among the flow-processing streaming
application while keeping its scaling capabilities [40].

Advantages of Using Message Streaming Platform

The rise of micro-services has led to new ways on how to transmit messages among intercon-
nected applications that have dependencies among each other. Usage of the old APIs can
lead to additional demands on the service that is less scalable than a separate platform to
distribute messages [40]. The second problem is the durability of each individual message.
When processing of certain messages is more resource-demanding and the processing appli-
cation is under higher load for a certain time, message durability provided by Kafka allows
the application to reduce the difference of processes messages once the resources are freed.
This platform is also designed to be highly performant, highly available and redundant,
supporting a high throughput of messages [16].

Transmission System

The communication is established mainly between producers and consumers that share
the same medium provided by Kafka. Kafka implements a system for transmission via
topics [16]. Topic represents a queue of messages that allows producers authorized to the

1https://kafka.apache.org/

21

https://kafka.apache.org/


platform to publish messages into the queue, which is identified by its unique name. Each
Kafka consumer has an option to subscribe to the given queue and start consuming messages
that were published into it. Each published message is referred to as a record and each
record contains meta-data and key-value pairs [40]. Each topic is stored in the form of a log
structure file. To store the messages and serve all requests created by subscribed consumers,
each topic is located at a server called a broker. Each broker must receive a message from
the producers, assign them corresponding offsets and commit the messages to storage on
the disk [40]. Kafka brokers provide retention capabilities to keep the messages for a certain
period of time before they are deleted from the queue. To keep the possible downtime as
low as possible, Kafka supports data replication of topics into multiple brokers, where the
broker contains cloned messages from the topics. If one of the brokers stops responding,
requests are forwarded to the other brokers. This requires a central coordinating system
that is called Zookeeper Cluster, which coordinates all brokers in the cluster and allows
them to exchange information [16]. This is realized by storing meta-data for each broker.
A general overview of the architecture from the point of client applications can be seen
in Figure 4.1. Kafka can be connected to external data stores (connectors). Producers
and consumers interact with the Kafka cluster and commit their progress after atomic
operations. Streaming applications leave event processing to the Kafka Stream API, which
produces the results as messages to other topics.

Database
(Connector)

Application
(Streaming processor)

Application
(Producer)

Application
(Producer)

Application
(Consumer)

Application
(Consumer)

Kafka Cluster

Figure 4.1: An overview of Kafka architecture

To ensure additional data replication and scalability, each topic may consist of several
partitions into which the topic is broken down. Partitions represent a subset of all messages
that were produced and stored in the given topic. Each message will be assigned a partition,
part of which the message will become. Kafka ensures that all messages in one partition
keep the causality by storing the original order in which the messages were received [40].

22



Each partition can be replicated among brokers based on its replication factor. If the
replication factor is lower than the number of brokers, each broker contains only a subset
of all partitions [16].

4.2 Protocol Buffers
To increase the efficiency of the streaming application as well as to provide a certain level
of validation, produced messages can have a strictly typed structure based on the de-
scription by the overlaying language. Examples of the technologies for this purpose are
protocol buffers (protobufs) designed by Google [2]. The motivation behind the protobufs
is to describe the structure of binary data and easily generate parser in any of the sup-
ported programming languages, which provides rigorous integration with the production
systems [2]. Among the supported languages are C++, Python, Java or Go. This system
of data serialization is also platform-neutral [2]. For generating valid parsers in the targeted
language, a protobuffer compiler named protoc is provided. A disadvantage of using auto-
matically generated parsers is a disarranged code style that might not meet the common
criteria set for the source code of a project.

Messages can have multiple attributes and each attribute has the corresponding data
type. Protocol buffers also support lists in the form of repeated attributes and optional
fields that might not be present in the message [33]. Each field has a unique number
used to identify the field in the binary format. Messages support nested design, such that
any message can have a field defined by another message type. The syntax also supports
enumerators as a pre-defined list of values [2].

If the current message format needs to be updated, protocol buffers provide multiple
guidelines on how the format change can be achieved. For example, to ensure compatibility
with the older type of messages, new fields should be set as optional or repeated. Many
field data types are compatible with respect to each other. Example of a protocol buffer
used to specify a format of the message is shown in Figure 4.2.

message Search {
required string query_text = 1;
optional int32 page_number = 2;
optional string client_name = 3;
enum SearchType {

SIMPLE = 0;
EXTENSIVE = 1;
OVERALL = 2;

}
SearchType search_type = 4 [default = SIMPLE];

}

Figure 4.2: Example of a protocol buffer message description

23



4.3 Architecture of Threat-Data System Communication
Because the number of analyzed samples is huge, all advantages described in Section 4.1
are leveraged to ensure perpetual protection of the users and continuous sample analysis by
internal systems that are deployed either in the cloud or internal servers. Each threat-data
analysis, monitoring and reputation system described in Chapter 3 produces messages that
are handled by Kafka and received at the back-end servers of the antivirus company. Each
message contains meta-data like geo-location, time and a record containing data produced
by the given system. Each system also uses one or more topics for specific types of messages,
e.g., reporting an incident or a newly discovered sample with zero prevalence. To lower the
overhead caused by the number of produced messages, related messages are aggregated by
the gateway servers or directly at client applications and sent as just one common message.
When an incident occurs, there is a high chance that multiple messages will be produced
by the client because the antivirus company tries to collect much possible information
required to classify and evaluate the threat and for threat-intelligence purposes respecting
the privacy of users. There are exceptions, such as requests for the reputation systems that
represent short messages with a few fields and are not aggregated as the other types of
messages [46].

24



Chapter 5

Cadet - A Real-Time Campaign
Detector

This chapter presents a design of the real-time campaign detection service CaDet (Campaign
Detector). It is designed as a web service that is able to analyze and visualize the processed
threat data. The chapter provides more information on the input data and consumed mes-
sages that are used for campaign detection, an internal data flow and rule-based decision
making for campaign detection. Furthermore, as a part of the system design, a way of
campaign-detection validation was proposed and described in this chapter. The chapter
concludes with a description of service monitoring and alerting required for validation of
the correct deployment and data processing.

5.1 Input Data and Messages
The main source of input information required for real-time detection of malware campaigns
are data feeds from threat-data services described in Chapter 3. Every threat-data reputa-
tion, analytical or detection system deployed on the end-user system sends the incident or
detection-related reports back to the company for closer analysis by publishing its messages
resulting in continual Kafka feed. The real-time detection service is designed to consume
messages from eight unique topics. Each topic consists of multiple partitions. The average
number of partitions for the supported topics is above fifty. Each topic represents a specific
area of the monitored domain described below [32]:

• Main feed of file reputation system – This feed consists of common client requests
and system responses to determine the prevalence of the analyzed sample. Responses
might also contain a low-priority, quickly determined and abstract classification from
a supporting classifier.

• Additional feed of the file reputation system – Messages regarding unknown
or low-prevalent samples are separated from the common feed because they are also
analyzed by additional services due to reasons described in Chapter 4. The structure
of the messages is similar to the ones from the main feed.

• Anti-rootkit feed reports – All incidents detected thanks to the anti-rootkit mod-
ule of the client scanner are published to this topic. It also contains meta-data about
the drivers and environment of the system at the time of incident occurrence.

25



• General incident reports – Messages published into this topic represent aggregated
data from various modules and a general model of the incident that might occur on
the monitored station, e.g., protected PC of the user. Some of these messages are
duplicated reports from other systems that can be consumed from their specific topics.
However, this feed might provide additional or reduced information that differs from
the mentioned alternatives.

• Reports of networking-related incidents – Some incidents are not tied to a
specific observed sample, e.g., user action executed by a mouse click, or a networking
shield monitoring the ingress and egress network traffic. Incidents like these are
reported into a separate topic.

• Domain reputation system feed – Similar to the file reputation system, a domain
is also evaluated and rated based on its basic properties described in the previous
chapters. Requests to obtain a reputation of the domain are handled by this feed.

• DNS reputation system feed – When a domain needs to be translated into an IP
address, the generated DNS request (A, AAAA, etc.) is captured and reported for
analysis purposes. If the translated domain is malicious, the connection is terminated
to protect the client.

• Android (mobile) incident reports – The last topic stores messages from mobile
clients as well as their related reputation statistics, detections and incident meta-data.

The above-mentioned topics store messages from all reported incidents. However, it is
necessary to filter input data that are invalid. The designed system must be able to detect
and discard occasional corrupted messages or messages with an invalid format. Each mes-
sage has a strictly typed structure described by protocol buffers which provide an interface
that allows to use them for parsing the consumed messages into language-specific structures
or detect an unsupported or corrupted message. The overall rate of message production
is very high, so the system must allow assigning multiple consumers for each subscribed
topic. This leads to faster message processing and lower delay between the time of message
report and campaign detection. Each consumer has an assigned unique thread of the appli-
cation process, so the application data should be thread-safe when possible and the service
needs to avoid common conflicts caused by parallelism, e.g., race conditions when multiple
consumers try to access data of the same campaign.

The parsed structures of protocol buffers contain all data from each message, many of
which are not relevant nor important for the detection of malware campaigns. For this
reason, the structures need to be transformed in an internal representation that contains
only the relevant data. Such objects must allow data serialization and can be stored into an
internal database to reduce the amount of stored data and increase the processing speed.

Incident reports need to be further filtered by multiple metrics. The first metric is an
identifier of the client installation. Each product installation has a unique identifier to
distinguish it from other clients and products. A client might also report multiple similar
incidents in a row, e.g., repeated detection of the same sample detected by a scanner. This
might cause flaws in counts of detections and such incidents should be processed as one.
The second filtration is necessary due to replicated incident reports across multiple topics.
For example, when an isolated incident occurs, the anti-rootkit system reports the incident,
but since no additional data were collected, the same incident can be reported as a general

26



incident stored in a separate topic as well. Incidents like these should be detected and
aggregated by the designed system.

Detection Parameters

All consumed events provide many different data that can be used to compile campaign
detection rules. Therefore the selection of the relevant data is required. The following
attributes are selected based on the value they provide as the primary source for campaign
detection information and are used during campaign detection experimentation described
in Chapter 7 [30, 45, 46]:

• Client detections – Client detections are described in Section 3.5. Detections can
be obtained separately for the top layer (the analyzed sample by the scanner) and
subsequent detections for the files generated or dropped by the analyzed sample, its
unpacks, etc. Client detections are used not only as a source of embedded classifi-
cations using a detection parser that can parse their format but also as a source of
campaign detection rules.

• File paths – This category includes file paths and file names that are recognized as in-
dividual fileless campaign categories. The obtained paths underwent a normalization
process to unify their format.

• Domains – This category includes domains and URLs, which are also recognized
as individual fileless campaign categories. They are also presented as a property of
sample campaigns, e.g., when the given sample accessed the domain.

• Classification – Classification is obtained by parsing client detections, using embed-
ded classifications present in the parsed events or by requesting the classification from
Tagger that serves as the main tagging service. The presence of embedded classifica-
tion and the individual layers of the classification tag can be used as parameters for
experimentation.

• Application protocol types – The application protocol represents an additional
layer bound to the detected event. Some types of messages are protocol-specific, such
as IRC communication mentioned in Chapter 2. This value can be used to improve
the detection of certain types of campaigns.

• Certificate – The Authenticode signature follows the X.509 format of certificates [19].
The certificate contains, among other properties, the subject of the certificate, the
certification authority, etc. It is also possible to obtain information about the current
status of the certificate. The state of the certificate may be valid, expired, revoked,
damaged, etc. These parameters can be used for experimentation.

• Sandbox prevalence – This value represents the prevalence of the sample in the
internal sandbox environment, which is deployed directly as a part of an antivirus
product. More suspicious or new unknown samples can be monitored for a limited
time in an isolated environment directly on the protected system and the sandbox
report is registered. The files can also be analyzed by the sandbox at the user’s
request.

27



• Shield triggers – Antivirus products consist of many different scanners and protec-
tion mechanisms called shields. This property provides additional information about
the service that registered the incident. It can be used to identify the source of
detections.

• Avast triggers – Avast triggers provide more detailed information about the incident
itself. The trigger is usually a specific monitored event, such as the execution of a
binary file.

• Smart Home data – Additional data about the source in the case of smart homes,
such as device OS, were used for experimentation focused on detections of IoT and
Linux campaigns.

• General activity of the graph database – It represents a degree activity of individual
nodes and edges. The experimentation was focused on the client submission nodes.
It provides activity data for multiple time slices, which can be aggregated into the
hour, daily and monthly statistics. The activity was described in Chapter 3.

• Weighted activity of the graph database – Opposed to the general activity described
above, this type of activity represents weighted relations between the queries nodes,
such as samples and properties.

• Cache prevalence – Consumed events are stored in the database for a limited time.
The event database is also referred to as the cache window. The experimentation
involves different time window durations for the stored events. The event cache is
further described in Chapter 6.

5.2 Classification and Campaign Detection
The service CaDet is designed to support all campaign types described in Chapter 2. This
list includes sample campaigns related to a certain file represented by its SHA-256 hash,
malware family campaigns providing information about the activities of certain malware
families and artifact campaigns. The campaigns might contain information about additional
samples which are tied either to a file or artifacts and properties, e.g., the visited domains or
file-system paths obtained during static or dynamic analysis. To determine if the observed
sample or property is malicious and to estimate its precise classification, the designed service
uses a hierarchical classification approach involving multiple systems [32]:

1. Tagger sample/detection classification – This is the most precise classification
because it represents a result of weighted comparison from multiple classification
sources and internal systems. The best classification was picked based on the calcu-
lated confidence, which can be obtained as a part of the classification result. Each
incident report contains a set of detection strings based on which the incident was
detected. If the sample has no classification, at least a subset of detection strings
reported with an incident might be classified and used as a temporary classification.

2. Embedded classifications – Some messages contain embedded data about classifi-
cation results estimated by internal systems that are not focused on precise classifica-
tion but at least the severity necessary for neutralizing an unknown threat. Classifi-
cation like these are embedded into the reputation, incident or network feeds. Using

28



their data helps to decrease the request load created by the application towards the
main tagging system.

3. Indirect classification – This type of classification is used in the case of domains.
Currently, Tagger does not support a direct classification of domains. However, a list
of samples that have accessed the given domain can be obtained from the internal
graph database. Once the samples are classified by Tagger, a majority vote is be used
to determine the classification of the given domain.

To get the final classification of objects that are not supported by Tagger like domains or
specific artifacts, an internal graph database must be used. It follows the specification de-
scribed in Chapter 3. Relationships between artifacts and samples are stored in an external
graph database continuously updated by a third-party internal service which provides an
interface to obtain information about connections between various properties and samples.
Because all data are stored as partial nodes of the graph database and the relationships
between objects as graph connections, it provides additional information about the activity
of each node. Each node represents a particular property or artifact of the sample. The
designed service estimates the final classification based on the classifications of samples
sharing the same artifact, a list of which is obtained from the internal graph database. The
activity of all nodes can be used for retrospective supportive inputs of sample prevalences
in a specific time window. This helps to cover the cases when the service has no previous
information about the sample or artifact.

Because Tagger provides information about classifications via REST API, fallback clas-
sifications are used when the classification was either not found or the rate of API requests
was higher than the current architecture supports.

Once the classification is determined, the campaign-related information can be derived.
The emergence of a new campaign can be detected by comparing the current re-occurring
prevalence of the sample and its overall spread in the past (e.g. last month). Data like
the name of the originating topic and its activity stored in the graph database can help to
determine its prevalence. A reason based on which the campaign was detected should be
stored and properly visualized together with campaign data. The classification is used to
determine the priority of certain detected campaigns so that the service is more focused on
malware campaigns rather than a campaign of clean samples. The presence of the sample
in an already active campaign or the end of the spreading period and finalizing/archivation
of the campaign is determined in a similar way. All related data obtained from the events,
such as sample properties or classifications, are recalculated based on each consumed and
relevant event. Figure 5.1 shows the overall abstract design of the service.

Multiple campaigns can be interconnected. Common connections binding two samples
are unpacking or installation, e.g., a certain installer can be used to install a different
malware, or the sample is dynamically unpacked to avoid the detections. Because the
incident reports can contain detections of the unpacked samples as well as the parent
files, similar connections (in case that both files are parts of the active campaigns) can be
connected and visualized.

Properties of campaigns of each category need to be visualized appropriately. Because
the service is designed as a web application, its dashboard is rendered in real-time. The
dashboard visualizes a summary of the most prevalent campaigns with the highest priority.
Because each campaign stores data about the countries in which the threat was detected, a
geographical map is rendered to easily navigate in the rendered state of the latest detected

29



Internal
Database

Alerting &
VisualizationConsuming Events

Kafka Cluster CaDet

Internal
Services

Figure 5.1: Abstract design of the detection service CaDet

threats. The designed service should display a unique map for each detected campaign to
monitor the activity of the detected threat.

The service should also provide an API interface for communication with other services.
The API provides information about detected campaigns based on their IDs. The user
should be able to get data about a single campaign or a list of results based on the key
attributes, such as the hash of the sample or family name. The data returned must be
identical to the data visualized in the web interface.

Campaign Score and Detection Rules

Detection rules are the main proposed solution for the detection of active malware cam-
paigns. The rules represent either a comparison of one of the attributes described in the
previous section with a specific value or a combination thereof. Detection rules are an ab-
straction over the different detection conditions of malware campaigns and help to present
the basic explanation for the detection of each campaign. The rules were initially only the
individual conditions that operated with the values of parameters described in Section 5.1.
Based on the experimentation described in Chapter 7, their representation was adjusted to
use the following attributes:

1. Weighted activity of the graph database

2. Cache prevalence

3. Campaign score

The weighted activity and cache prevalence were described in the previous section.
Campaign score is introduced as a new numerical metric, which is calculated on the basis of
partial embedded feed classifications and individual properties of the consumed event. Its
values range in the interval ⟨0, 1⟩. It effectively detects related events leading to campaign
detection. The more important an event is in terms of campaign detection, the higher
its value. This score also affects the probability of obtaining additional data from exter-
nal sources about the sample due to the stochastic approach. The score is influenced by
many parameters and all parameters described in the previous section are covered by the

30



experimentation. All properties that affect the malware score in the final implementation
are described in Section 7.2.2. Example of the campaign detection rule based on different
conditions is shown in Figure 5.2.

Detect campaign if:
# Newly detected samples, low prevalent ones
-- Weighted graph activity during the last day

has achieved the score 550
and
-- the last month average is 0.
# Significant activity changes, short term campaigns
-- General activity of the last hour

has achieved the score 500
and
-- the activity during the last day is 0.
otherwise use general rule:
-- Hourly activity must be at least 8x higher than the last day.

Figure 5.2: Example of a simple campaign detection rule based on activity

5.3 Validation of Results
The results provided by the application need to be validated and if the current rules for
campaign detection are not sufficient, the service needs an external notification about the
missed campaigns. For this purpose, data from social media and blog posts will be used for
detection of missed malware campaigns as well as the detection of relevant campaigns in
case the rules need to be updated or to be more strict for campaign detection. Social media
are a common source of data interchange between security researchers and companies based
on the detected IoCs (indicators of compromise) or the increased activity of certain malware
families or samples. Such tweets are spread using specific hashtags or the messages have
a common structure that is easily parsed by an automated service. There exist multiple
services that aggregate such social media messages and provide an API to easily access
the aggregate statistics as well as current trends of malware families and campaigns for
threat-intelligence purposes. Data from such services can be used for automated validation
of the detected campaigns. The other source is an internal communication channel of the
company that exchanges information about the newly detected threats. A more detailed
description of the used sources is provided in Section 7.1.2.

5.4 Monitoring and Alerting
The activity of the proposed detection service should be monitored by collecting information
about various metrics. Example of the collected metric is the number of processed events
or requests related to the external services. The number of processed events needs to be
monitored due to possible failure of data source or consumer. The number of requests for
external services, such as the internal graph database or Tagger, should be monitored, as

31



the services may have a temporary outage and they need to be disabled in the configuration
file. This metric also helps to identify the service load generated by CaDet. Monitoring
should be performed by one of the available platforms focused on monitoring such data.
This approach does not require additional processing resources of the service itself. The
visualization is also left to the selected platform.

An alert is needed to inform cybersecurity researchers about the current situation and
the emergence of a new malware campaign. There are many other reporting systems that
need to be monitored and alerts simplify the interaction of users with the service. For this
purpose, one of the company’s internal communication channels should be selected and
integrated into the service. This step should be consulted with the potential users in order
to find the most suitable communication channel for alerting. Each alert should include
a hash of the sample, family name or value of the artifact associated with the detected
campaign. It should also contain the reason for detecting the campaign and the name of
the source, as analysts can decide based on these values whether the alert requires their
attention. The alert must include a link to the CaDet web interface to show details about
the detected campaign.

32



Chapter 6

Implementation

This chapter provides information about the implementation of the real-time malware cam-
paign detection service CaDet designed in the previous Chapter 5. It discusses the used
technologies and provides detailed information about the process of event consumption.
The web interface of the service and its public application interface are also presented. The
implemented service is used for experimentation described in Chapter 7.

6.1 Used Technologies
This section discusses the technologies used for the implementation. It also presents the
reasons for choosing selected technologies. The technologies used are divided into several
categories based on their main functionality.

Web Technologies

The web service was implemented using the programming language Python 3. It simpli-
fies the rapid prototyping process and its packages provide access to many web services
for the presentation of detection results, the database technologies interface and the Kafka
infrastructure. Python is a language often used in Avast Software, which simplifies the main-
tenance of the service [46]. As an underlying web framework, a micro-framework Flask was
chosen. Flask provides more flexibility than a high-level framework Django. The frame-
work also provides methods for API implementation and JSON processing. CaDet is not
a service focused on a large throughput of API requests, so the usage of request-optimized
FastAPI is not necessary. Flask also provides a way of running the web application using
the default deployment server that is a part of the framework. However, the Flask default
development server is not suitable for production deployment and the provided guidelines
recommend the usage of a different tool. Since the application will be deployed in a UNIX
environment, Gunicorn was chosen as the used UNIX-compatible WSGI HTTP Server [22].
WSGI (Web server gateway interface) is a specification describing how a web server com-
municates with web applications. Gunicorn supports multiple web frameworks, including
Flask. It supports an instantiation of multiple workers responsible for handling requests
and decides how to communicate the incoming requests to the framework process. This
approach supports the scalability of the service regarding API and the web interface.

The basic structure of the web interface was designed using HTML and its style us-
ing CSS and Bootstrap. A templating language for Python called Jinja2 was used for the
creation of dynamic web pages. Flask provides support for an extension Jinja2, which al-

33



lows the insertion of pseudo-Python commands directly into a predefined HTML template.
Based on the arguments passed to generating function handled by Flask, template com-
mands can be executed and the final HTML page will be dynamically generated [22]. This
is useful for generating HTML documents with dynamic content, for example, visualization
of campaigns. Jinja2 also supports defining macros that serve as methods for generating
HTML content and help to keep the DRY principle1 and high code readability.

Virtualization Technologies

Because the application was designed such that it is easily containerized, Docker was chosen
as the base virtualization platform. The main commands for assembling a container image
are written in the configuration file called Dockerfile. The containerization ensures that
the application execution is not dependent on the underlying hardware of the execution
environment, which generalizes the options for deployment on different servers [38]. Each
image is built from the base image Python-3.8. The implemented service is designed as
a multi-container application. This means that the web instance, database, consumers
and other modules are executed in separate containers. A tool Docker compose supports
this approach and is used to define and deploy the application. Individual containers can
be linked based on their dependencies. The linkage is used for the interconnection of
the database with other containers (consumers for event insertion, the web application for
obtaining data about campaigns, etc.). Each predefined container also supports an option of
an automatic restart in the case of an unexpected failure, which promotes a high availability
of the application in case of an error.

Database Technologies

For a suitable database technology, a general-purpose document-based NoSQL database
MongoDB was chosen. It splits the database into multiple collections that contain the
stored entries called documents [14]. Documents may not have a predefined scheme like SQL
database and provide a more flexible approach towards storing variable data. MongoDB
also supports indexing for high-demand documents, which was used to decrease the time
necessary to find documents based on the most used properties [22]. Another type of
index supported by MongoDB is the Time-to-live index (TTL). The TTL index is tied to
a specific date-time property. Once the predefined interval expires, the document will be
automatically removed from the collection. This is useful for defining time windows/ranges
and is used in the case of event cache described in the previous chapter. It also supports
scaling options via sharding and data replication that might be used to further increase the
stability of the implemented application. MongoDB and Apache Cassandra were compared
in order to choose the best suitable database technology during the initial experimentation
and implementation of the service. Apache Cassandra is also a NoSQL database used
in real-time processing applications [13]. It is a highly scalable database promising high
performance. It requires a column-oriented schema of the stored records decreased the
flexibility provided by MongoDB. The more flexible model used by MongoDB has proven
to be more suitable for the implemented service and the usage of Cassandra did not result
in a significant time reduction of database operations. For these reasons, MongoDB was
chosen because it is already used by other internal systems of the company, which simplifies
the future monitoring and deployment of the service by responsible people.

1Abbreviation of ”Don’t repeat yourself“.

34



Event Processing Technologies

Confluent Kafka for Python2 was chosen as the underlying interface for communication with
Kafka architecture. This interface is reliable, performant and Confluent Kafka was founded
by the creators of the original Apache Kafka. It provides a thread-safe implementation of
consumers and producers, which meets the demands of the designed service described in
Section 6.2.

6.2 Event Consumption
Confluent Kafka mentioned in the previous section is a framework that supports simple
prototyping of Kafka consumers and producers. In the comparison study of multiple Kafka
interfaces and popular Python libraries, such as Pykafka and RdKafka, it was proven
that it provides the highest throughput of messages and has the least message-processing
overhead [5]. This makes it suitable for event consumption from multiple sources, such as
incident report feed, and gives the application more time to process individual events.

However, the interface is simplistic and does not provide some of the methods of other
concurrent libraries that make it easier to manage individual consumers, monitor the offset
of the consumed messages, etc. These features were implemented manually using a hierar-
chical structure of consumers in the module event_consumers. The class KafkaConsumer
represents an instance of a consumer that is able to subscribe to a single topic using the
credentials and data from the configuration file and forward the consumed messages into an
event handling module. This type of consumer can be run as a non-blocking operation in
a separate daemon threat of the application. The class KafkaConsumerGroup implements
the construction and management of a group of dependent consumers that are related to
a single specified topic. It provides an interface to set a number of requested concurrent
consumers that subscribe to the given topic and executes them in their assigned threads.
The class CaDetEventConsumer is the highest abstraction of the hierarchical consumer tree
and defines the consumer groups for individual topics consumed by the service and man-
ages those groups. A provided setup method instantiates the main consumer based on the
selected event type. This is used in a script kafka-events-consumer.py, which allows
consuming events from a single topic based on the provided argument.

Each consumer runs in a separate docker container defined by the Docker compose tool.
This allows the operator to easily manage individual feeds, view logs related to individual
consumed feeds, restart a failing consumer without affecting other consumers, or view the
updates of each consumer. Figure 6.1 demonstrates the architecture of the consumers and
the relations between different containers.

6.3 API
Because the data representing detected campaigns might be used by other automated sys-
tems or scripts as well, CaDet provides a public application interface for other services that
allows them to easily access the processed data, such as campaign information or malware
family trends. The implemented API tries to follow principles defined by RESTful API
(Representational state transfer) guidelines [47]. The communication is based on server-
client architecture. It is stateless, which means that each API request is handled inde-

2https://www.confluent.io/

35

https://www.confluent.io/


DB Container
(MongoDB 4.4)

Gunicorn Worker Gunicorn Worker Gunicorn Worker

CaDet Web Application Container

KafkaConsumer
(daemon)

KafkaConsumerGroup
(selected feed)

KafkaConsumer
(daemon)

CaDetEventConsumer

Figure 6.1: Container relationships and consumer tree

pendently because there is no relation between different requests and users. All requested
resources are identifiable. Response caching is automatically handled by the underlying
frameworks and web server.

The implemented system provides multiple endpoints, responses of which contain data
serialized using JavaScript Object Notation (JSON). Because the underlying database stores
data as binary JSON, which allows it to support data structures like date, such objects
need a valid JSON representation. For the dates, a format based on ISO 86013 was chosen.
ISO 8601 is an international standard describing the exchange of date and time-related
data. All implemented endpoints are described below.

• /api – An overview and simple description of all API endpoints (JSON).

• /api_human – A human-readable visualized overview and a simple description of all
API endpoints generated using the Swagger UI interface.

• /api/sample_campaigns/id/<campaign_id> – Get information about sample cam-
paign identified by the given ID.

• /api/sample_campaigns/sha256/<sha256> – Get information about all sample cam-
paigns for the given SHA-256.

• /api/family_campaigns/id/<campaign_id> – Get information about malware fam-
ily campaign identified by the given ID.

3https://www.iso.org/obp/ui#iso:std:iso:8601:-1:ed-1:v1:en

36

https://www.iso.org/obp/ui#iso:std:iso:8601:-1:ed-1:v1:en


• /api/family_campaigns/name/<family_name> – Get information about all cam-
paigns for the given malware family.

• /api/fileless_campaigns/<property_name>/id/<campaign_id> – Get information
about fileless campaign identified by the given ID and its type.

• /api/fileless_campaigns/<property_name>/value/<property_value> – Get in-
formation about all campaigns of the given artifact or property based on its type.

CaDet provides two ways to describe the API interface - a machine-parsable JSON
for other systems that may detect accidental changes or a new version of the API. The
human-readable form is automatically generated using a Flask extension Swagger UI4,
which allows the application to generate the description based on the predefined JSON
file. The human-readable interface also recognizes various parameters that are required
and passed to the endpoint so that the user can directly test the interface using a generated
form near the endpoint description. Swagger UI automatically visualizes and highlights
the obtained JSON results. Example of generated documentation for family campaigns is
shown in Figure 6.2.

Figure 6.2: API documentation generated using Swagger UI

6.4 Dashboard
Dashboard of the service summarizes and visualizes important data that the service pro-
vides. One of the visualized elements is a world map that is shown in Figure 6.3. It
represents the current state of malware campaigns related to specific countries currently
detected by the service. The map shows numbers of the detected campaigns that are still
active and were observed in the given state. The maximum number of the detected active
campaigns in a single state is used to calculate the density of the color of any given country
by calculation the ratio between the maximum and observed number in the given coun-
try. The more dense the country color is, the higher amount of the detected campaigns was

4https://swagger.io/tools/swagger-ui/

37

https://swagger.io/tools/swagger-ui/


found in the country. Initially, popup bubbles of different diameters were displayed over the
countries to visualize this metric. However, this feature was replaced by the color density
based on user feedback. The bubbles make it difficult to focus on certain smaller countries.
This approach makes it easy for users to see which countries are currently the most tar-
geted by malware campaigns. The world map is rendered using Datamaps framework for
Javascript5.

Below the world map, there is a sorted list of currently active and the most prevalent
family and sample campaigns. It visualizes the basic statistics, such as their classification.
Furthermore, a number of samples belonging to the corresponding campaigns is shown as
an attribute and was used for sorting the results. Hash of the sample, name of the malware
family or ID of the campaign can be used to easily navigate and access the more descriptive
campaign data via hyperlinks that redirect the users to lists of campaigns represented by
the given properties.

Figure 6.3: A map visualizing ratios of detected campaigns per country

Interactive World Map

The Datamaps framework does not currently support direct interaction options. The pre-
defined event handlers of the map have to be re-implemented using Javascript in order to
achieve this functionality. This allows users to interact with the map and use the countries
as clickable references that redirect them to detailed statistics about the given country.
The re-implementation has made it possible to implement a zooming feature controlled by
the mouse scroll wheel. The default map constructor was replaced to use the implemented
handling function _handleMapReady once the map is generated. This function replaces all

5https://datamaps.github.io/

38

https://datamaps.github.io/


mouse-over event handlers of the countries. It also establishes their references to coun-
try details and initializes the custom zoom handler. The custom zoom handler disables
mouse-click events when the mouse is dragged. This allows the user to easily navigate and
translate the zoomed map without unexpected redirections. The predefined zoom scales are
calculated based on Equation 6.1 for ten various levels of scaling. The scaling definitions
were inspired by the various framework methods that use the positional operations and the
generated maps.

𝑠𝑐𝑎𝑙𝑒𝑖 = 𝑒0.1·𝑖·log(𝑚𝑎𝑥_𝑠𝑐𝑎𝑙𝑒) (6.1)

The new scale is recalculated when the user has scrolled with the button or clicked on
the zoom control buttons. The same applies to the translation of the map when a mouse is
dragged. The animation is ensured by consequent interpolation between the recalculated
values in the set time interval.

The set of the shown statistics about the given countries is determined by the current
active campaigns. The most active sample, family, domain and file path campaigns are
shown in separate tables sorted by the sample count to prioritize larger campaigns confirmed
by many events. The selected country is highlighted on the map to represent the current
selection. Example of the interface for the detected campaigns is shown in Figure 6.4.

Figure 6.4: Visualized statistics about the given country

39



6.5 Campaign Data
The user interface of individual campaigns is represented by collapsible Bootstrap panels6

for each campaign. Along with the corresponding campaign name (malware family, SHA-
256 hash or an artifact value), representative badges with the most important data, such
as classification, state of the campaigns or the related threat-data sources, are displayed.
Example of provided data about the detected campaign can be seen in Figure 6.5. The
shown campaign of the sample with the hash prefix 36a1ddc2b87 was detected based on
the reputation and domain feed. It was initially detected on May 1st, 2021 and archived
on the same day. The list of visualized properties is tied to the type of campaign and its
attributes. Each campaign bears an initial reason for its detection, e.g., a sudden increase
in the observed prevalence of the observed family. Campaigns also provide Alpha-3 codes of
the countries7, in which the campaign-related samples were observed. Each campaign can
be connected to other campaigns based on mutual relations. For example, both unpacked
sample and its parent are detected with their corresponding campaigns and the user can
navigate to the related connected campaigns.

Figure 6.5: Example of the detected sample campaign

Family campaigns, as opposed to sample campaigns related to one specific sample,
show a list of hashes of the samples belonging to the given campaign. This list is currently
limited up to a thousand unique samples. To visualize the main differences of the samples,
an internal clustering system Clusty is used to obtain information about the cluster into
which the individual samples belong. The system tries to group samples by their mutual
relations, properties and classification. This list of hashes is visually distinguished by an

6https://getbootstrap.com/docs/3.3/
7https://www.iban.com/country-codes

40

https://getbootstrap.com/docs/3.3/
https://www.iban.com/country-codes


assignment of a unique color for each hash based on its cluster. Different color means a
different cluster. If the sample does not belong to any cluster, its style remains unchanged.
All related operations are handled directly by the client.

The header of the campaign details visualizes a map of countries, in which the sample,
family or property was observed. CaDet does not provide further information about the
current changes in the campaign since the initial detection and a time of its last update.
To resolve this problem and support the detected campaign with data from external tools,
the unique number of users that has seen the given sample or property is obtained from
the graph database and visualized per each day of the last week. These data do not only
help users to confirm the campaign, but it also provides further information about the
campaign activity. In the case of fileless properties, the value can be interpreted and stored
in the graph database under multiple possible categories. For example, a file name can be
interpreted as a file name or a file path. Two charts, each for a different interpretation, are
displayed due to these reasons.

Each campaign type supports searching for campaign information based on basic and
advanced properties. The basic properties include campaign ID and the most specific search
property. It is the hash of the sample for sample campaigns, the name of malware family for
family campaigns and the type of the property or its value for fileless campaigns. If the user
requires to narrow the search results by more specific criteria, those can be displayed by
clicking on the specified button. The advanced properties include sample classification, time
range of the campaigns, option for sorting the results (e.g. by the highest sample count).
It provides an option to specify the sources of detection and other specific attributes based
on the type of campaign, such as a specific hash that should belong to a certain family
campaign. Visualized advanced search form is shown in Figure 6.6.

Figure 6.6: Basic and advanced search properties of sample campaigns

41



6.6 Alerting and Monitoring
The implemented service is able to inform the security researchers, analysts and all involved
people by generating an alerting message about a newly detected malware campaign into a
shared communication channel in the company. Such alerts must contain identifiers of the
detected campaigns and their main representative data, such as related samples or sources.
An interface for alerting using the Slack platform was implemented for this purpose. Slack
is the main communication channel of the company. The interface is able to generate alerts
by posting messages into the shared channel. Each channel is identified by its incoming
webhook tied to a specific application. The webhook provides a unique URL that supports
the posted JSON data representing the structure of the message. CaDet implements a
custom interface that allows to easily construct different types of messages and post them
to the selected webhook. Example of the constructed messages is shown in Figure 6.7.

Figure 6.7: Slack message alerting about a detection of the new campaign

Activity of the designed detection service is monitored via a visualisation platform
Grafana8 which supports creation of custom dashboards and charts that show real-time or
aggregated data using various metrics. Each event, such as connection to the service and
accessing its dashboard, successful API response or request, error detection, etc. can be
tracked by sending an UDP protocol message into a StatsD daemon accepting incoming
messages and further pushing such data to Grafana for processing and visualisation [46].
Grafana also supports alerts in case the used metrics change, e.g., the number of processed
Kafka messages is lower than a certain number which helps for continues service failure
detection and maintenance [20]. Interface for UDP communication was implemented as a
part of utility methods. Example of the graph monitoring the number of consumed events
is shown in Figure 6.8.

Figure 6.8: Monitoring of the processed events using Grafana platform

8https://grafana.com/

42

https://grafana.com/


Chapter 7

Experimentation

This chapter describes the process of experimentation based on the principles presented
in the previous chapters. It focuses on the scope of experimentation and the selected
parameters that are used for campaign detection. This chapter also discusses the individual
contributions of proposed detection rules described in Chapter 5 and event sources discussed
in Chapter 3. The evaluation of the detection capabilities of the implemented service is
also provided. The campaign detection was further verified based on the data reported by
external sources to determine how the service is generalizing outside of the scope of internal
systems.

7.1 Experimentation Scope
Experimentation and evaluation of the campaign detection are based on a comparison of two
individual types of campaign reporting sources. Both set the boundaries of experimentation
regarding campaign evaluation. This section discusses their mutual comparison. It also
provides information on categorizing campaign-reporting sources into two groups based on
their credibility.

7.1.1 Internal Sources of Campaign Reports

The first types of source are the internal systems of Avast Software, which already collect
event information and report the obtained knowledge. These include systems described in
Chapter 3, such as the graph database or an internal large-scale database of the retrospective
data. The main disadvantage of these systems is that they are either affected by all data
sources (without focusing on the client) or provide only a way to search for retrospective data
lacking real-time detection capabilities. If the campaign is detected by CaDet, the campaign
is evaluated retrospectively using data collected from these sources. If the properties of the
detected campaigns are not appropriate and the campaign should not to be detected, the
detection rules described in Section 5.2 are changed to prevent such detection.

7.1.2 External Sources of Campaign Reports

The second type of campaign reporting source is based on external detections. External
data sources are used to verify that the service is generalized enough to model the real
world to the extent of the events consumed. Data about ongoing or emerging campaigns
are obtained from independent external reports. The data represent public reports created

43



by cybersecurity researchers and various antivirus companies and are for comparison with
internal data.

The first type of data selected is a blog post from research labs and other antivirus
companies. They are considered reliable and do not require further validation other than
detection of the family aliasing. Such institutions published mainly two types of reports:

• Newly discovered threats, unknown malware families, new malware strains, etc.

• Reported campaigns of already known malware families and IoCs.

CaDet is tested against both types of the above-mentioned situations. Although data
exchange agreements already exist between cybersecurity companies to increase their de-
tection capabilities, this allows for a cross-comparison of their own detection approaches
with the proposed solution. Each antivirus company has its own usually disjointed group of
customers, so the use of this information is crucial for general threat reporting of large-scale
campaigns.

The collected reports often provide not only key detection information, such as the name
of the family currently spreading, but also IoC examples that can be verified using internal
analysis systems. The internal systems provide additional information about the threats and
help adjust the current version of detection rules. Among the selected antivirus companies
whose reports were monitored were the following companies: ESET, Kaspersky, McAfee
and Symantec. They issue reports on a regular basis, but each company has its own format
of the reports provided. Each campaign report is manually evaluated and confirmed. The
data collected need further analysis to obtain all possible information. For example, IoCs
could be obtained by additional research because Symantec reports do not include IoCs.
The samples reported by ESET are typically represented by SHA-1 hashes, which are not
supported by all internal systems, etc. Reports from other research platforms or threat-
intelligence research groups, such as Cisco Talos Intelligence Group, are also considered
reliable.

The reported and published campaigns usually represent a prevalent campaign with a
large-scope impact. These campaigns are also verified by antivirus companies, so they are
considered trustworthy. However, the number of ongoing campaigns is larger, and there
are also smaller campaigns that are not reported on the official blogs. They may not be
considered to be a campaign by the definition of other companies or their scope of impact
is too narrow. For these reasons, other external services are used to monitor current events.
A list of other external services is described below.

• Reports from the public sandbox Any.Run1. The data of this service can be used to
monitor the activity of different malware families in the exposed environment. This
sandbox follows the analysis principles described in Chapter 2.

• Reports from Malware bazaar provided by the service Abuse.ch2. It provides a sum-
mary of researchers on malicious software, similar to Any.Run, supports automated
information gathering of the followed security researchers presenting their reports
on Twitter (a social media platform), provides up-to-date threat-intelligence data on
threats such as the most seen malware families, analyzed file types, etc. Example
report of the top submitted malware families directly to Abuse.ch service is shown in
Figure 7.1.

1https://any.run/malware-trends/
2https://abuse.ch/

44

https://any.run/malware-trends/
https://abuse.ch/


• Malware URLs3 is a service to detect active phishing or malicious domains. Top
reports can be obtained publicly, but reports are updated after a longer period of
time.

Data from the above-mentioned sources are not considered reliable and are used to
confirm blog posts of antivirus companies. They are also used as a source of reports of
minor activity changes without blog posts from more reliable sources such as a new phishing
domain or detecting a change in the number of reported samples of a certain malware family.

Figure 7.1: Top malware families reported by Abuse.ch

7.2 Campaign Detection Evaluation
The experimentation process of fine-tuning the detection rules has led to the normalization
of the detection rules and changes in implementation so that the conditions are effectively
evaluated. The detection capabilities of the service were evaluated several times. The
evaluation was a subsequent iterative process that responded to new blog posts and newly
detected campaigns by the service. This section provides the results of the final evaluation
and describes the changes that were made during the experimentation process.

7.2.1 Threat-Data Sources Evaluation

Topics from which the relevant events are consumed do not only contain relevant data
or events of the same message format. The feed of all events contains events reporting
incidents that occurred at clients, but also other internal services. Such events need to be
filtered. The list of filtered events is shown below:

• Events generated by additional products, not only monitored clients – Avast Secure-
Line (VPN service), Avast Forum, etc.

• Events unrelated to specific samples (except domain reporting sources)
3https://www.malwareurl.com/

45

https://www.malwareurl.com/


• Events generated by internal tools such as analytical platforms and internal sand-
boxes. These data do not represent the current situation of clients.

• Top stars (very prevalent samples), clean samples according to the campaign score.

The fileless campaigns are related to a specific value and type of the artifact. Not all
sources contain useful data for this type of campaign. The selected sources that detect
these types of campaigns are shown in Figure 7.2.

Type of the fileless campaign Sources
Domains DNS feed, Domain feed
File paths Anti-rootkit feed, Android feed

Figure 7.2: Sources used for detection of fileless campaigns

Feed from each source is evaluated independently. The evaluation includes their com-
mon coverage and the impact that each source has on the final detection of the analyzed
campaigns. The evaluation is performed on several long-term deployments of the service.
It is based on the observation of detected campaigns and specific results of the deployed
version of detection rules. The following is a summary of the contributions of each source
to campaign detection.

• General incident reports: This feed represents the main source of campaign-related
data. It also partially covers data from other data feeds. In these cases, the incident
is reported in a specific feed, such as the Anti-rootkit feed, and then reported again
as a general incident report with additional information from other sources.

• Reputation feed: The reputation feed is especially useful for detecting campaigns
of clean samples.

• Loner feed: The feed of loners (low prevalent samples) provides data about the
emerging threats but mostly covers campaigns of clean samples similar to reputation
feed.

• Android feed: A useful source of additional data on threats on mobile devices.
Malware campaigns are reported based on this feed.

• Anti-rootkit feed: This feed is mostly covered by the feed of general incidents, but
it is useful for separating related data, such as file paths, that are used to detect
fileless campaigns.

• Domain feed: The originally used feed was replaced during the experimentation by
the additional experimental source. The reasons are described in Section 7.3.

• Network shield: The feed reported by the network shield is the main source of
networking-related incidents.

The importance of each feed for the detection of malware and clean campaigns is assessed
separately. Malware campaigns are important in terms of mitigating identified threats and
informing analysts about new campaigns. However, the rules were adjusted to detect clean
campaigns as well. Their importance lies in the detection of an emerging threat, which
is not yet covered by client detections and needs to be stopped in order to mitigate its

46



further spread. Figure 7.3 shows the importance of each individual source for the detection
of clean campaigns and Figure 7.4 represents the malware campaigns. The importance is
calculated based on the ratio of correctly identified campaigns of the given classification
that are reported by the feeds.

Figure 7.3: Source importance for detection of clean campaigns

Figure 7.4: Source importance for detection of malware campaigns

Among the detected campaigns, the percentage of campaigns supported by multiple
sources achieves 68%. This is a positive metric, meaning the majority of the campaigns are
tracked by various independent data sources that provide additional information about the
activity of sample or the malware family and their origin.

The average multiplication rate achieves 77%. This metric represents a probability that
if an event is part of a particular campaign, the event cache contains an event reporting
the same sample from another user or a different feed. This means that even if the event is
missed or not processed, the campaign will most likely be detected due to data present in
the event cache.

47



7.2.2 Detection Rules Evaluation

Each attribute of the detection rules described in Section 5.2 is tested as a single condition or
in combination with other parameters. As a result, this section discusses the most successful
combinations of the rules. Figure 7.5 shows the effectiveness of individual conditions in
comparison with their mutual combinations. Most campaigns are detected based on the
campaign score, the cache prevalence, and weighted graph database activity of the samples.
The campaign score is not efficient enough to be used as a standalone metric, but it helps
significantly in combination with other sources. The combination of all three properties is
used the most by the service for campaign detection.

Figure 7.5: Types of the used detection rules

The following attributes are to have the greatest impact on the campaign score for the
campaign detection. The default campaign score is set to a maximum value of one before
the calculation, and the additional attributes described below affect the score. The score is
normalized into the specified probability range after calculation.

Negative impacts on the campaign score:

• Avast triggers – These values represent incident triggering events when scanning
attachments, detection by a behavioral shield monitoring individual processes, when
detecting packets by a network shield, and the browser scanning detections. The
mentioned triggers have often led to the detection of false-positive campaigns and the
campaign score is decreased by 30-80% when encountered.

• Avast shield – The JavaScript scanning shield has led to an increased number of false-
positive detections and the campaign score is decreased by 20% when encountered.

• A valid certificate – Samples with a valid certificate are generally less likely to be
malware and they also led to an increase in false alarms. Therefore, their score is
decreased by 30%.

• Higher sandbox prevalence (SNX) – A high sample prevalence presents several
factors but can be thought of as a sample covered by detections. The high prevalence

48



also reduces the chances of a malware sample classification. If the value is higher than
the specified threshold, the campaign score is decreased by 20%.

Positive impacts on the campaign score:

• Avast triggers – Campaigns detected on the basis of events from these sources:
detections by the behavioral shield, on the execution of sample, and exploitation
mitigation often contained related data and were less likely to be false positives.
They increase the campaign score by 20-30%.

• Invalid, expired or revoked certificates – Sample with invalid, damaged or re-
voked certificates are more likely to be classified as malware. Increasing the campaign
score by 30% leads to the detection of additional malware campaigns.

• IRC protocol – Application protocols can lead to detection of campaigns based on a
certain type of communication, as explained in the malware family examples provided
in Chapter 2. IRC is an example of such protocol due to C&C communication, and
few undetected campaigns led to an increase of the campaign score by 10%.

• Low sandbox prevalence (SNX) – The low prevalence increases the chance of
detection of emerging campaigns and the sample is more suspicious. The scan in the
sandbox is determined by certain conditions. These events increase the campaign
score by 20%.

• DNS TXT response type – DNS translation is heavy traffic, but TXT records,
which allow the exfiltration of any arbitrary information by the malware DNS server,
led to detection miss of a single related campaign. Based on this reason, the campaign
score is increased by 20%.

• Presence of Smart Home data – The IoT campaigns were initially missed by the
detection service. If the origin of the event is a smart home device, the campaign
score is increased by 40% to increase the chances of campaign detection.

Other properties do not significantly affect the detection results after recalculating the
campaign score based on their values. A similar approach is used to set thresholds for the
activity of the observed objects in the graph database. The activity thresholds are split into
four main categories representing the increase in activity over the last hour compared to
the last day and the increase over the last day compared to the average daily activity of the
last month. Each of these increases is determined individually for new, emerging threats
and re-occurring samples. They are often manifested by a sudden increase of their activity.
The activity of re-occurring malware samples and families can be observed in multiple time
slices of the last month.

7.2.3 Detection Statistics

This section focuses on presenting the evaluated detection statistics for all types of cam-
paigns detected by the implemented service.

A one-time evaluation of the currently stored campaigns in the production database is
focused on the ratio between the various detected campaigns. This is shown in Figure 7.6.
The highest number of campaigns detected is related to specific samples, followed by the
fileless artifacts. The number of detected family campaigns is the lowest of all categories
due to more strict detection rules and a limited number of malware families.

49



Figure 7.6: Ratio of the detected campaign types

In terms of continuous evaluation of the real-time detection, average numbers of the
detected campaigns for the given category are presented in Figure 7.7. It confirms that the
number of family campaigns detected is on average the lowest and that sample and fileless
campaigns are more prevalent due to the diversity of their possible values. The number of
campaigns detected varies slightly on different days, weekends, and different times of the
day due to the world-wide user base and different numbers of clients installed across the
world. The proportion of the detected fileless campaign types (path-to-domain ratio) was
originally 13% of path campaigns and 87% of domain campaigns (with the older detection
rules and usage of the original domain feed) compared to 3% and 97% respectively after
the final evaluation. It means that the domain campaigns are more likely to be detected.

Type of the campaign First evaluation Final evaluation
sample campaigns 300 / hour 45-80 / hour
family campaigns 3 / hour 3 / hour
fileless campaigns 30-100 / hour 30-100 / hour

Figure 7.7: Average numbers of the detected campaigns

Among the most common reasons for missing a campaign detection (false negatives) are:

1. Unknown classifications/tag – The sample does not have any classification in the
internal systems, as it could be a newly emerged sample or the company has not yet
obtained the given samples from any source. This is a common reason for missing
family malware campaigns that require accurate classification in order to be detected.

2. Conflicting classifications – Conflicting classifications are a reason for not classify-
ing a fileless property that requires a unified classification of the connected samples.
A commonly observed phenomenon is the unification of the classification of different
samples with the correct malware type, but the family classifications differs.

3. No data/few samples/stochastic approach – Samples do not have to be sent by
Avast clients for further analysis and only a certain fraction of the available data is
processed. If the sample is not obtained from the client or other sources, the missing
analysis data about the samples complicates both campaign detection and verification.

50



4. Marginal cases of overly strict rules – The rules are designed to find a compromise
between the different perspectives of campaign detection. The increase in missed
campaigns is caused by increasing the thresholds to lower the number of false positives.

The sample campaigns have proven themselves in the scenarios above by indirect detec-
tion of campaigns (as a different family, no classifications, etc.). The sample campaign does
not require a precise classification to be detected. The estimated false positive campaign
rate is 80%. This number depends on the preferences of users and their subjective campaign
definitions. The presented number is calculated based on an additional campaign confir-
mation by any external campaign reporting source. Due to the amount of the processed
data and the variety of the analyzed feeds, the calculated value is a success for campaign
detection. This value is expected because external sources, such as blogs, often do not cover
smaller campaigns.

The most common reasons for detection of false positive campaign are:

1. Grey zone, a common campaign, no verification – Some campaigns cannot be
confirmed because the samples analyzed are not yet submitted and analyzed by the
internal tools of the company.

2. High current volatility of the graph database activity – Some campaigns are
detected due to the high volatility of the graph database activity, which means that
they are significantly active, but in waves of very short duration. The detection rules
fail to recognize a singular campaign of longer duration but detect multiple small
campaigns, which is a less preferable result.

3. Clean data – The main purpose of clean campaign detection is to find an emerging
threat that is not yet covered by various analysis tools and detections. However,
the amount of processed clean data is higher than the number of malware incidents.
Better filtering is one of the possible enhancements in the future.

4. Generic classifications – When the samples are correctly classified as malware with
a common malware type, it is not enough to detect the family campaign. Moreover,
classifications obtained from the embedded sources, such as detections, are often more
general than the final classification estimated by Tagger. However, they are present in
most of the incident reports and represent the fastest way of obtaining classification
of the sample.

5. Marginal cases of overly mild rules – To identify certain types of campaigns,
such as emerging samples, rules were made more general. This has lead to an increase
in false positives from other types of sources.

The number of undetected campaigns in relation to the size of event cache is also
evaluated. In the case of this metric, no significant detection differences are spotted once
the duration has achieved a threshold of fifteen minutes. The differences are shown in
Figure 7.8. If the size of the event cache is larger, it only slightly reduces the speed of the
database operations, but it does not help improve the detection of missed campaigns. For
this reason, a limit of fifteen minutes is selected as the final cache size. The recurrence rate
of malware campaign-related sample events in the cache has achieved 87%.

In the case of sample campaigns, the ratio of blocked and passed threats is eval-
uated in terms of campaign importance. If the incident is suppressed for any reason, a

51



Figure 7.8: Relation of event cache size and the number of undetected campaigns

passed threat is reported. Detection that results in threat mitigation is reported as the
blocked threat. The higher the value of this metric, the higher the volatility of the sam-
ple. The reasons why the incident is suppressed for different clients vary. Campaigns with
these metrics higher than zero are also less likely to be false positives. The proportion of
campaigns that contained threat-blocked ratio conflicts for samples in the same campaign
was initially 29%. Following the increase of threshold in the rules, the proportion of such
campaigns falls to 3%.

The impact of using the weighted activity obtained from the graph database instead
of the general one is also a measure. The difference in campaign detection is estimated at
2%, which means that the difference between the two metrics does not have a significant
effect on the process. A decrease in the false-positive rate is observed when using Day vs.
Daily Average activity instead of using the overall monthly activity by 6.7%.

The most common reasons for network-related campaign detection are blocks generated
by the active component of webshield that permanently scans the traffic. The second most
common reason is a block of URLs. With these types of incidents, a specific URL is
obtained from the events. The lack of detections of these types of campaigns is caused by
the low conjunction of Avast’s and Malware URL’s domains lists during evaluation. Slow
updates of the lists of the active campaigns (approximately once a week) have complicated
the consequent evaluation.

Whether a campaign is classified or detected correctly is not a sufficient metric for
evaluating the real-time detection service itself. For this reason, campaign detection
delays are also evaluated based on multiple factors. The main metric is the analysis of
the campaign using the retrospective data obtained from other internal systems and event
cache. The purpose is to find the first potential event that should have been included in
the detected campaigns. The campaign detection time is then compared to this number
and the difference is noted. Figure 7.9 shows the average campaign detection time. Most
campaigns are detected within 20 minutes of the first campaign-related event that did not
result in campaign detection.

Once a campaign is detected, its duration represents the time of initial detection until the
time of campaign archivation based on the detection rules. The average times of campaign
duration are shown in Figure 7.10 for various campaign types. For most sample campaigns,

52



Figure 7.9: Comparison of campaign detection delays

the campaign ends after one day. The family campaigns have a higher duration. Fileless
campaigns end on average up to an hour.

Figure 7.10: Comparison of average campaign duration

7.2.4 Real World Campaigns

For the reasons described in Section 7.1.2, the service was evaluated on the basis of the detec-
tion of confirmed campaigns by external sources by the researchers of the given institutions.
If the campaign was not detected, the reason for the campaign miss was analytically exam-
ined with a focus on why the current rules were not sufficient or why the campaign was not
detected at all. The list of campaigns evaluated in this way is described below [15, 17, 39].

• Casbaneiro – Casbaneiro is a malware family that typically operates in Latin Amer-
ica and serves as a banking trojan. In addition to other features such as mouse and
keyboard emulation, Casbaneiro can take screenshots and upload them to the C&C
server. The campaign took place mainly in Mexico in March 2021 and originally

53



was reported by ESET. The analyzed samples revealed that the campaign was indi-
rectly detected as a family campaign and a sample campaign, which means that the
classifications of the detected families differed but were correctly detected under the
common malware type banker.

• Mekotio – Mekotio is similar to Casbaineiro in terms of being a banking trojan,
which mainly attacks Latin America. It is interesting that this banker uses a shared
SQL database as its C&C server. It has been active since at least 2015, but in January
2021, there was a recent campaign targeting Spain. It was detected indirectly as both
a sample campaign and a family campaign and was originally reported by ESET.

• Grandoneiro – Grandoneiro has similar traits to the above-mentioned campaigns,
but CaDet was unable to detect the campaign in February 2021. Analysis of the data
showed that clients did not report any such data, which means that the detection miss
was probably caused by insufficient data or user base disjunction between different
antivirus companies.

• Danabot – A Danabot campaign, a banking trojan that attempts to steal creden-
tials and private data, took place in January 2021 and was detected as a sample
campaign, but not as the malware family campaign. This was due to an unknown
internal classification for the observed samples. While a malware family campaign
requires the knowledge of precise classification, sample campaigns do not initially
require classification to be able to detect similar threats.

• Bazarloader – Bazarloader is written in C++ and tries to exploit communication
using external tools, such as mails and a communication platform Slack, to spread. It
serves for downloading additional modules and can be used by other malware types,
such as Ryuk, for deployment. This campaign was directly identified as a sample and
family campaign in January 2021.

• Minebridge – Minebridge was detected as a sample campaign due to a generic tag,
which means that the observed samples were correctly classified as malware, but the
family information was missing. Minebridge is a remote access Trojan whose campaign
was observed in February 2021 by exploiting documents of Microsoft Word.

• Masslogger – Masslogger is a credential stealer targeting .NET platform. The anti-
debugging techniques used are simple and can be bypassed by the analyst, leading
to decryption and payload generation. The campaign was reported in February 2021
and detected as both sample and family campaigns by CaDet.

• VGriefferS – This family is based on ransomware principles, although it does not
rename the encrypted files, as most ransomwares do. It informs victims about encryp-
tion and the steps that need to be taken in order to decrypt the data. The campaign of
this malware was observed in February 2021 and was detected at the sample campaign
layer because generic tags correctly classifying the threat as malware were missing the
family classification.

• LodaRAT – LoraRAT is an AutoIT script-type remote access trojan with a deeper
infection chain, which also acts as a keylogger. The campaign was reported by Talos
Intelligence and was targeting states of North and South America. The detected
samples were correctly classified as keyloggers, but the family classifications differed.

54



• Vovalex – Vovalex was also noticed in February 2021 and this family is a type of
ransomware. The threat was discovered by MalwareHunterTeam and it is considered
to be the first ransomware written in D programming language. Vovalex is distributed
mainly from the pirated versions of downloadable software, such as various torrent
clients, unzippers, etc. The encrypted files can be easily recognized because each file
has an appendix .vovalex. It was recognized at the sample campaign layer, but due
to its novelty, it was missing an exact classification.

• Flubot – Flubot is a campaign in contrast with previous campaigns because it is
spread primarily via SMS messages that encourage users to install the malware appli-
cation on their phones. The campaign of this type of malware was spotted in February
2021 and was correctly classified on both campaign detection layers.

• Turla – The campaign of this malware utilizes various sophisticated spreading tech-
niques like vulnerabilities of the Flash service, document attachments, attacks on the
older Java versions, etc. Its campaign was observed in January 2021 and detected on
both types of layers.

• Emotet – The Emotet campaign was reported by multiple sources and it represents
a commonly visible malware family of bankers and password stealers. The campaign
was detected by earlier versions of this service in October 2020 and confirmed by
sample analysis.

• Coinminer – Coinminers focus on mining cryptocurrencies. A campaign of this
generic family was reported in February 2021 by two independent sources. It was
successfully detected as a sample and family campaign.

• Vadokrist – Vadokrist is a Latin American banking trojan that first appeared in
2018, but its campaign was discovered in February 2021. It shares the most important
traits with other banking families presented in this list and the program was written
in Delphi. ESET first announced this campaign that was detected on the sample
campaign layer by CaDet under a different classification.

• Lokibot – The Lokibot campaign was discovered in January 2021 and was detected
as both sample campaign and malware family campaign. Lokibot is known to employ
trojan malware to steal sensitive information from the victims and uses obfuscated
files and software packing as its defense evasion techniques. The campaign in February
2021 was caused by the impersonation of a launcher of the popular computer game
Fortnite.

Figure 7.11 shows a summary of the number of sources that mentioned the individual
campaigns in their reports, whether the campaigns were confirmed by AnyRun sandbox or
Malware Bazaar and the number of IoC (samples, artifacts) manually analyzed in order
to find relations with the detected campaigns. This summary confirms that the additional
data sources, such as AnyRun reports, are in some cases able to validate a campaign. It also
summarizes which campaigns were detected by CaDet (SC – sample campaign, FC – family
campaign).

55



Campaign Analyzed No. CaDet AnyRun Abuse.ch
IoCs reports det. det. det.

Casbaneiro 6 1 SC + FC no yes
Mekotio 3 1 SC + FC no no

Grandoneiro 7 1 no no no
Danabot 18 2 SC yes no

Bazarloader 9 1 SC + FC no no
Minebridge 30 1 SC no no
Masslogger 16 1 SC + FC no no
VGriffersS 10 1 SC no no
LoraRAT 20 1 SC no yes
Vovalex 12 1 SC no no
Flubot 8 4 SC + FC no yes
Turla 14 1 SC + FC no no

Emotet 30 3 SC + FC yes yes
Coinminer 10 2 SC + FC no yes
Vadokrist 5 2 SC no no
Lokibot 20 3 SC + FC no no

Figure 7.11: Campaign reports from external sources

7.3 Domain Feed Comparison
Domains campaign detection has proven that many possible values require reduction by fil-
tering the most common values. This is necessary to reduce possible false positive detections
as well as high data rates.

Experiments with the original feed reporting domain incidents have found that most of
the reported domains and URLs can be classified as clean. This poses several problems be-
cause malware campaigns are more difficult to identify among the clean values. There is also
a high detection rate of common campaigns without any significant or related information
valuable for threat-intelligence purposes. Example of such a domain is youtube.com.

This issue is resolved by creating a custom domain list that is inspired by other filtering
lists of the internal services, such as Clusty or the graph database. Some values are added to
the blacklists based on the common detections by CaDet. The list consists of the blacklisted
domains and URL prefixes.

The next step is to consume data from the newly created experimental feed instead of
the original domain feed. The new experimental feed contains events related to the domain
that is evaluated as suspicious at the client stations. The evaluation is based on static
rules and the randomized clean domains previously obtained from the original data feed
are not present. This reduces the amount of data processed and helps focus on malware
campaigns. The percentage of campaigns reported from the new source drops to 18% of
the original value. However, the proportion of malware-related campaigns remains at 99%
of the original value. This means that the decrease is caused by the reduction of the clean
campaign detections, which is an acceptable metric. The proportion of manually confirmed
fileless malicious campaigns by their analysis using internal tools is estimated to be 8%.

56



Chapter 8

Testing

The designed and implemented detection platform was tested with a suite of unit, inte-
gration and end-to-end tests to verify and validate its overall functionality. The test suite
represents a set of related test cases. All types of mentioned test types focus on different
aspects and verify the functionality by using different testing techniques, such as mocking
or generating an artificial data feed. All tests type are a common combination for testing
of production services. The total number of the implemented automated tests is 342.

8.1 Testing Interface and Scope
All tests were implemented using the Python 3 module unittest. This module provides
a high-level interface for the implementation of automated test cases and test suites. A
Python testing framework pytest is used for the execution of the implemented test cases.
Pytest provides a more pleasant user interface and can be easily extended with different
plugins [31]. It also supports the configuration of the test interface using a configuration file.
All tests are fully automated and do not need user interaction during the test execution.
A short statistic of passing and failing tests is printed to the standard output after the
execution of all tests is completed. Test coverage and statistics are generated into the
prepared folder in a human-readable representation of an HTML document. To verify that
code meets the standard Python criteria defined by PEP rules, the Flake8 module is used
to check the source code and print any violations of the validated rules. This includes a
maximum line length, usage of single vs. double quotes, order of the imported modules,
etc.

8.2 Unit Tests
Unit tests focus on testing the functionality of specific modules, classes or functions [12].
They do not test the overall functionality of the application or cooperation between different
modules. All tests are sorted into multiple categories and can be run separately for each
category or as a whole set. The structure of unit test categories reflects the module structure
of the project itself, so it is easier to navigate and find a certain test that will require an
update once the implementation changes in the future and vise versa. Each module may
be further split into multiple subcategories. A basic description of the main categories
is provided below. Other tests that have a separate module due to the project structure
include campaign detection tests that test whether detection rules are triggered based on

57



predefined conditions, classification tests and validation of the parsed detections. They
also include verification that the consumers are set correctly and return valid attributes.
The filtering module is also tested to verify that the event properties or entire events are
properly filtered. The report displayed after test execution is shown in Figure 8.1.

• Alerting – This set of tests verifies that the alerting and monitoring interface was
set up successfully for the related services Grafana and Slack, mocks the networking
methods to simulate the communication and validates the constructed messages based
on the message schemes provided by the platform documentation.

• Campaigns – Tests are verifying that the attributes of the initialized campaigns are
set correctly.

• DB – Tests for the successful setup of the database interface.

• Event Records – Validation of transformation of the raw parsed events based on
protobuf schema into an internal representation of the analyzed events.

• External Services – These tests mock responses from the external services, such
as Tagger and the graph database, based on the specification of their outputs and
validates that the mocked responses are processed correctly.

• Utils – Testing of all utility functions, formatting, localization, etc.

Figure 8.1: Report shown after the execution of unit tests

58



Unit tests are not dependent on any data from the configuration file, any access to
the external services or other servers. A concept called mocking is used to mimic the
dependencies [36]. It allows the replacement of any object with an artificial mock that
provides an interface for checking whether and how many times a certain method was called.
It also allows setting a specific return value of any method or function. For example, to test
the response of the unit that is dependent on the configuration file, the parsing method of
the configuration file is mocked with an object with a predefined return value independent of
the current contents of the file itself. This helps to easily isolate the tested scope. Manually
predefined data are generated for each test. The total number of implemented unit tests
is 163.

8.3 Integration Tests
Integration tests are meant to verify the integration of modules and various parts of the
service to function properly using the real database access and web interface [51]. Integra-
tion tests also verify the communication with external services. They load all credentials
and necessary data from the configuration file. Many of them require a running instance of
the whole service. If the given test suite requires such an instance, an abstract class for the
given test suite was implemented. It ensures that the service is executed as a sub-process
that is terminated after all tests in the test suite are finished. Execution of integration tests
takes a long time due to the initialization of the whole service and connection to exter-
nal services. Tests focused on the web interface are performed using the Firefox browser.
Because the browser can be downloaded, an automated script that downloads and sets up
the browser together with its webdriver was implemented to limit the storage of obtainable
data. The external services might have an outage during the test execution or the tests
may be dependent on other factors that cannot be influenced by the developer. The testing
framework provides a way of skipping the test when the criteria are met. For example, the
test is skipped when the external service is disabled by the configuration file.

The webdriver is responsible for communication between the browser and Selenium, a
testing framework for the browser automation [48]. Selenium was initially implemented as a
Java library but its support was extended into multiple languages. It provides an interface
for browser manipulation, page navigation, manipulation of the DOM structure and other
useful operations. It also provides many methods for finding and altering the present and
displayed elements, styles or scripts. It allows supports a connection to a VNC server for
visualization of the testing process. A basic description of the main categories of integration
tests is shown below. The total number of implemented integration tests is 176.

• DB – Verification that the detected campaigns and parsed events are correctly in-
serted, stored and found in the underlying database.

• External Services – Validation of the obtained results from all external services
via direct communication using the provided API. The tests verify the real analysis
results for the queried samples and properties.

• Web – Web tests are split into two main subcategories, API tests and Web UI tests.
API tests verify that the service returns correct JSON responses on the endpoint
access. Web UI verifies the document structure and the results displayed by the web
service. It also tests all searching parameters by emulation of the user input on the
web page. Error responses in case of an unexpected input are also tested.

59



Among other tests that have a separate module are event consumption tests. The tested
consumers are executed for a limited amount of time or number of consumed messages. The
tests verify that the consumed events were stored successfully into in underlying database.
Tests for integration with the protobuf schema and validation of the constructed messages
into internal representation are also present.

8.4 End-to-End Tests
End-to-end tests do not focus on a specific unit, module or single dependency of their
integrated functionality, but an overall functionality of the test scenarios that verify multiple
possible outputs of the process [51]. The implemented end-to-end tests focus on the process
of campaign detection by generating an artificial data feed of the predefined messages
that should lead to the campaign detection by the service. Service responses are tested
by a unique scenario for each type of campaign (sample campaigns, family campaigns or
fileless campaigns). They verify that the feed was correctly processed and that all expected
campaigns were detected. The campaign must be stored in the underlying database, and
the service should respond with the correct results by displaying the detected campaigns in
the dashboard, campaign details and provides the correct data about them via API.

60



Chapter 9

Future Improvements

This chapter suggests possible improvements based on the implementation phenomena de-
scribed in Chapter 6 and detection evaluation provided in Chapter 7. All enhancements
are based on the current state of the service and focus on improving the results already
achieved by detecting all types of malware campaigns. The user experience and visual-
ization are also assessed to further improve the use of the service as a platform to alert
cybersecurity researchers and analysts about the ongoing events recently reported by the
antivirus clients.

9.1 Property Classification and Artifacts
This work implemented, evaluated and analyzed the fileless campaign detection of two types
of artifacts – domains and file paths. Each type of artifact includes different interpretations,
e.g., the file path can represent a file name or a sample path on the protected system.
However, internal analysis tools support many different types of artifacts [32]. Such artifacts
include mutexes, imports and exports of the binary executable files, API calls, resources of
the binary samples, names of the file sections, etc.

Mutexes represent signaling objects on a given execution platform and are set to state
signaled when they are owned by a thread of the running process [15]. They can be used
to detect if the executed malware is already running on the infected computer. Imports of
the binary executable files represent names of the libraries and functions that are included
and loaded before the execution of the code to ensure the functionality of the program due
to dependencies [29]. Less common sample attributes, such as these, can contain unique
values used by a specific strain of malware. This can help the analysis tools to classify the
threat.

Integrating such artifacts with CaDet is possible through the usage of an API or reg-
ularly updated database used by the service. It can help to expand the list of supported
artifacts and estimate their classification based on the samples that use the given artifacts.
Monitoring the prevalence of the above-mentioned attributes can help to detect campaigns
of a certain malware family that usually uses the observed values, or identify an unseen
malware family.

61



9.2 Campaign Connections
At present, the individual events are interconnected and processed based on the client
context and values of the observed property, hash of the sample, family name or an artifact.
Once the campaign has been detected and displayed by the service, more detailed data can
be obtained from other internal services of Avast Software so that a common pattern can
be found between the different campaigns.

The first external service, still under development, would allow CaDet to acquire se-
mantically identical malware families. Their names are different because the samples were
obtained from various sources that use unique naming conventions. This phenomenon is
called aliasing of malware families and is a common problem challenging the automated
systems used for threat-intelligence purposes. This system could help CaDet identify a
diverse campaign of the same family with different naming conventions and either merge
them into one or provide users with information that such a connection exists.

The second approach is to extend the current integration with Clusty as an internal
sample clustering service in order to find relations between the detected campaigns based
on the clusters into which they were clustered. The related connections can be shown to
users together with the relevant data representing the reasons for campaign connection due
to property similarities that are evaluated by Clusty.

9.3 Honeypots Integration
A honeypot is a service, system or environment that is designed to attract potential attack-
ers by exposing a known vulnerability, port, etc. Honeypots are able to collect additional
data about the monitored environment and observe the activity of attackers who try to
exploit the exposed system [27]. Internal honeypots share information about current events
by creating Slack alerts and producing Kafka messages that may be consumed by other sys-
tems. This allows CaDet to integrate honeypotting as an additional potential data source
and try to detect campaigns in ongoing honeypot activities. Currently deployed honeypots
collect information based on the current events of the exposed environments and are not
affected by the artificially generated samples or sample exchanges between the companies,
which supports the general motivation of the implemented service.

9.4 Alerting and Report Generation
CaDet currently provides an interface for creating Slack messages and posting them to the
selected Slack channel based on the webhook specified in the configuration file. Potential
expansion in the future could include integration of the user base, e.g., by using an OAuth
authentication and storing the user data into the database. Various users, such as malware
analysts, can then specify their own privacy policies, rules for notifications or provide
their own Slack webhooks to stay informed about the current events. Example of such
an extension would allow a potential user to be notified when a specific malware family is
detected based on a selected rule. This will increase the flexibility of notifications for the
implemented service and increase interaction with individual users.

The second possible enhancement in terms of reporting is the addition of support for
generating regular reports about the current detection statistics. For example, a monthly
report will be automatically generated in the form of a document showing individual statis-

62



tics about the campaign detected in the evaluated time period. Information such as this
can be valuable for threat intelligence and confronting different internal services, identifying
potential flaws in the detection process, or being shared by the company on social networks.

9.5 Scalability and Deployment
The system is currently deployed on a single test server with an integrated database. The
consumers are based on the specification of individual containers in the Docker configuration
files. Usage of an external database server might help with database concurrency. Deploying
consumers among multiple servers and increasing their counts in the specified consumer
groups supports scalability in terms of event processing. The robustness of the service also
increases because the service does not depend on one server. For this purpose, it is possible
to use an external task-processing broker to distribute the generated jobs across multiple
deployed workers deployed by the service and thus distribute the current processing flow.
Example of such tools is Celery. Celery provides a highly available and fast approach to task
queue management [49]. Queues can be filled with analysis and evaluation tasks invoked
by individual consumers and event handlers with the purpose of task flow distribution. It
has native support for multiple servers, which further increases the scalability.

9.6 Event Processing and Bindings
A processing speed up might be required to keep up with the amount of produced events,
which is expected to increase in the future together with the expansion of the user base
and newly emerging threats. Approaches to increase processing speed can help reduce the
stochastic approach. To ensure that the service keeps up with the flow, it is possible to
implement Python and C++ bindings in the application. The main logic of campaign
detection and event processing can be rewritten in C++ and the acceleration is achieved
through the bindings. A language extension Cython, an integration of C++ and Python,
can also help achieve similar results [11].

An alternative approach to increase the speed of event processing is to create an event
processing cache where events are not processed sequentially as a single transaction. How-
ever, they are processed in a bulk of the consumed messages as a whole. This will help
reduce the number of database operations and speed up the process.

63



Chapter 10

Conclusion

The goal of this thesis was to design and implement a service for real-time malware cam-
paign detection to mitigate the need for retrospective querying of internal databases and
threat-intelligence systems and to alert authorities when noticeable events occur without an
avoidable delay. For this reason, it was necessary to study the internal systems of the Avast
Software company and the topics of threat intelligence, malware classification and real-time
event processing. Based on the provided information and documentation, a system named
CaDet (Campaign Detector) was designed and implemented.

The system is able to process event and incident reports originating at protected end-
user systems of the clients, filter the valuable information and estimate the emergence or
ending period pattern of malware campaigns. It is designed to have a general support of
events and file formats as well as to be able to report campaigns from incident reports that
have occurred on personal computers, network traffic or mobile devices. CaDet supports
three types of detected campaigns: sample campaigns related to a specific file, malware
family campaigns and fileless campaigns of a specific property value, such as domain. In-
formation about the campaigns can be obtained by using the provided API or accessing
the interactive web application. The web interface provides threat-intelligence information
in the form of an interactive map, statistics about the selected countries and details about
the detected campaigns. Data provided include campaign detection sources, target coun-
tries, or recent threat activity. The service was successfully integrated with other internal
systems.

The experimentation has confirmed that this service is able to detect malware cam-
paigns. The rules, based on which is the detection based, can be altered to increase the
efficiency of the implemented service and its detection capabilities. CaDet was able to de-
tect campaigns reported by internal tools of the company as well as external sources, such
as public blog posts of threat-intelligence researchers. The proposed detection rules rely on
the recent activity obtained from the internal graph database, the prevalence of events in
the fifteen-minute event cache and campaign scores. Campaign score is a metric calculated
based on the properties of the obtained events, such as the validity of the certificate or the
application protocol.

The service was also thoroughly tested with a set of unit, integration and end-to-end
tests to verify its overall functionality. The functionality of the service can be enhanced by
the addition of honeypots as a new data source, integration with other internal systems for
family aliasing and campaign clustering, or implementation of the user base.

64



Bibliography

[1] 2020 Vulnerability Statistics Report. EdgeScan. [Online; cit. 1.1.2021]. Available at:
https://cdn2.hubspot.net/hubfs/4118561/BCC030%20Vulnerability%20Stats%20Report%
20(2020)_WEB.pdf.

[2] Protocol buffers. Google developers. [Online; cit. 10.12.2020]. Available at:
https://developers.google.com/protocol-buffers.

[3] State of Malware Report 2019. Malwarebytes Labs. [Online; cit. 1.5.2021]. Available
at: https://resources.malwarebytes.com/files/2019/01/Malwarebytes-Labs-2019-
State-of-Malware-Report-2.pdf.

[4] State of Malware Report 2020. Malwarebytes Labs. [Online; cit. 1.5.2021]. Available
at: https:
//resources.malwarebytes.com/files/2020/02/2020_State-of-Malware-Report-1.pdf.

[5] Python Kafka Client Benchmarking. Activision Game Science. 2017. [Online; cit.
15.2.2021]. Available at:
http://activisiongamescience.github.io/2016/06/15/Kafka-Client-Benchmarking/.

[6] Investigation: WannaCry cyber attack and the NHS. National Audit Office. April
2018. [Online; cit. 14.11.2020]. Available at: https://www.nao.org.uk/wp-content/
uploads/2017/10/Investigation-WannaCry-cyber-attack-and-the-NHS.pdf.

[7] The Threat intelligence Handbook: Moving Toward a Security Intelligence Program.
2nd ed. CyberEdge Group, 2018. ISBN 978-1-948939-06-5.

[8] PE Format. Microsoft Corporation. 2018. [Online; cit. 12.12.2020]. Available at:
https://docs.microsoft.com/en-us/windows/desktop/Debug/pe-format.

[9] Alam, S., Traore, I., Sogukpinar, I. and Coady, Y. In-Cloud Malware Analysis
and Detection: State of the Art. ACM International Conference Proceeding Series.
September 2014, vol. 2014. DOI: 10.1145/2659651.2659730.

[10] Amir, A., Salman, N., Babak, S. and David, B. Malware Dynamic Analysis
Evasion Techniques: A Survey. November 2018. DOI:
https://doi.org/10.1145/3365001.

[11] Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. et al. Cython:
The Best of Both Worlds. Computing in Science & Engineering. May 2011, vol. 13,
p. 31–39. DOI: 10.1109/MCSE.2010.118.

[12] Buffardi, K., Valdivia, P. and Rogers, D. Measuring Unit Test Accuracy.
February 2019, p. 578–584. DOI: 10.1145/3287324.3287351.

65

https://cdn2.hubspot.net/hubfs/4118561/BCC030%20Vulnerability%20Stats%20Report%20(2020)_WEB.pdf
https://cdn2.hubspot.net/hubfs/4118561/BCC030%20Vulnerability%20Stats%20Report%20(2020)_WEB.pdf
https://developers.google.com/protocol-buffers
https://resources.malwarebytes.com/files/2019/01/Malwarebytes-Labs-2019-State-of-Malware-Report-2.pdf
https://resources.malwarebytes.com/files/2019/01/Malwarebytes-Labs-2019-State-of-Malware-Report-2.pdf
https://resources.malwarebytes.com/files/2020/02/2020_State-of-Malware-Report-1.pdf
https://resources.malwarebytes.com/files/2020/02/2020_State-of-Malware-Report-1.pdf
http://activisiongamescience.github.io/2016/06/15/Kafka-Client-Benchmarking/
https://www.nao.org.uk/wp-content/uploads/2017/10/Investigation-WannaCry-cyber-attack-and-the-NHS.pdf
https://www.nao.org.uk/wp-content/uploads/2017/10/Investigation-WannaCry-cyber-attack-and-the-NHS.pdf
https://docs.microsoft.com/en-us/windows/desktop/Debug/pe-format


[13] Chebotko, A., Kashlev, A. and Lu, S. A Big Data Modeling Methodology for
Apache Cassandra. June 2015, p. 238–245. DOI: 10.1109/BigDataCongress.2015.41.

[14] Chodorow, K. and Dirolf, M. MongoDB: The Definitive Guide. 1st ed. O’Reilly
Media, Inc., 2010. ISBN 1449381561.

[15] Elisan, C. C. Advanced Malware Analysis. McGraw-Hill Education, 2015. ISBN
978-0-07-181975-6.

[16] Ellis, B. Real-time Analytics: Techniques to Analyze and Visualize Streaming Data.
Wiley, July 2014. ISBN 978-1-118-83791-7.

[17] Eslahi, M., Salleh, R. and Anuar, N. Bots and botnets: An overview of
characteristics, detection and challenges. Proceedings - 2012 IEEE International
Conference on Control System, Computing and Engineering, ICCSCE 2012.
November 2012, p. 349–354. DOI: 10.1109/ICCSCE.2012.6487169.

[18] Gallagher, S. They’re back: inside a new Ryuk ransomware attack. SophosLabs.
October 2020. [Online; cit. 10.5.2021]. Available at:
https://news.sophos.com/en-us/2020/10/14/inside-a-new-ryuk-ransomware-attack/.

[19] Gerck, E. Overview of Certification Systems: X.509, PKIX, CA, PGP & SKIP. The
Bell Newsletter. July 2000, ISSN 1530-048X, Vol. 1, p. p. 8. DOI:
10.13140/RG.2.1.1274.2489.

[20] Ghanei, F. Statsd Metrics Documentation. August 2018. [Online; cit. 24.4.2021].
Available at:
https://readthedocs.org/projects/statsd-metrics/downloads/pdf/latest/.

[21] Highland, H. J. The brain virus: Fact and fantasy. Computers and Security. 1988,
vol. 7, no. 4. ISSN 0167-4048.

[22] Holop, P. Classification of Potentially Malicious File Clusters via Machine
Learning. Brno, CZ, 2019. Bachelor thesis. University of Technology Brno, Faculty of
information technology. Available at: https://www.fit.vut.cz/study/thesis/21927/.

[23] Hossin, M. and M.N, S. A Review on Evaluation Metrics for Data Classification
Evaluations. International Journal of Data Mining & Knowledge Management
Process. March 2015, vol. 5, p. 01–11. DOI: 10.5121/ijdkp.2015.5201.

[24] Hrádek, I. Štruktúra APK súboru na OS Android. 2015. Master’s thesis. Masaryk
University, Faculty of informatics. [Online; cit. 15.10.2020]. Available at:
https://is.muni.cz/th/uiuub/thesis.pdf.

[25] Jajoo, A. A study on the Morris Worm: Optimal Co-flow based scheduling in Data
Center. Purdue University. May 2018.

[26] Jung, H., Lee, H. and Choi, J. Efficient Malicious Packet Capture Through
Advanced DNS Sinkhole. Wireless Personal Communications. March 2017, vol. 93.
DOI: 10.1007/s11277-016-3443-1.

[27] Kinariwala, R. M. and Jethava, G. B. Research on Various Next Generation
Honeypot Systems. IJERT. December 2012. ISSN 2278-0181.

66

https://news.sophos.com/en-us/2020/10/14/inside-a-new-ryuk-ransomware-attack/
https://readthedocs.org/projects/statsd-metrics/downloads/pdf/latest/
https://www.fit.vut.cz/study/thesis/21927/
https://is.muni.cz/th/uiuub/thesis.pdf


[28] Kolias, C., Kambourakis, G., Stavrou, A. and Voas, J. DDoS in the IoT: Mirai
and other botnets. Computer. January 2017, vol. 50, p. 80–84. DOI:
10.1109/MC.2017.201.

[29] Koret, J. and Bachaalany, E. The antivirus hacker’s handbook. John Wiley and
Sons, Inc, 2015. ISBN 978-1-119-02875-8.

[30] Kováč, P. Overview of the internal graph database. Internal documentation of Avast
Software.

[31] Krekel, H., Oliveira, B., Pfannschmidt, R., Bruynooghe, F., Laugher, B.
et al. Pytest x.y. 2004. Available at: https://github.com/pytest-dev/pytest.

[32] Křoustek, J. and Zemek, P. What is Clusty? Internal documentation of Avast
Software.

[33] Lakhani, J. Protocol Buffers: an Overview (Case Study in C++). International
Journal of Scientific Research in Computer Science Applications and Management
Studies. January 2014, vol. 3.

[34] Langley, A., Iyengar, J., Bailey, J., Dorfman, J., Roskind, J. et al. The QUIC
Transport Protocol: Design and Internet-Scale Deployment. August 2017,
p. 183–196. DOI: 10.1145/3098822.3098842.

[35] Lipovčan, R. Monero usage and mining from usable security point of view. 2019.
Master’s thesis. Masaryk University, Faculty of informatics. [Online; cit. 30.3.2021].
Available at: https://is.muni.cz/th/pvbu5/Thesis.pdf.

[36] Mackinnon, T., Freeman, S. and Craig, P. Endo-Testing: Unit Testing with
Mock Objects. December 2001.

[37] Manos Antonakakis, e. a. Understanding the Mirai Botnet. 26th USENIX
Security Symposium. August 2017. [Online; cit. 10.4.2021]. Available at: https://
www.usenix.org/system/files/conference/usenixsecurity17/sec17-antonakakis.pdf.

[38] Merkel, D. Docker: lightweight linux containers for consistent development and
deployment. Linux journal. 2014, vol. 2014, no. 239, p. 2.

[39] Namanya, A. P., Cullen, A., Awan, I. U. and Disso, J. P. The World of Malware:
An Overview. In: 2018 IEEE 6th International Conference on Future Internet of
Things and Cloud (FiCloud). August 2018, p. 420–427. DOI:
10.1109/FiCloud.2018.00067.

[40] Narkhede, N., Shapira, G. and Palino, T. Kafka The Definitive Guide: Real-time
data and stream processing at scale. O’Reilly, July 2017. ISBN 978-1-491-99065-0.

[41] Paquet Clouston, M., Haslhofer, B. and Dupont, B. Ransomware Payments
in the Bitcoin Ecosystem. Journal of Cybersecurity. April 2018, vol. 5. DOI:
10.1093/cybsec/tyz003.

[42] Pawlak, P. Cyber security woes: WannaCry? European Union Institute for Security
Studies (EUISS). May 2017. ISSN 2315-1129. [Online; cit. 2.5.2021]. Available at:
https://www.iss.europa.eu/sites/default/files/EUISSFiles/Alert_13_Cyber.pdf.

67

https://github.com/pytest-dev/pytest
https://is.muni.cz/th/pvbu5/Thesis.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-antonakakis.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-antonakakis.pdf
https://www.iss.europa.eu/sites/default/files/EUISSFiles/Alert_13_Cyber.pdf


[43] Pawlak, P. Mirai Botnet Loader Campaign. IBM X-Force Exchange. May 2017.
[Online; cit. 1.4.2021]. Available at: https://exchange.xforce.ibmcloud.com/
collection/Mirai-Botnet-Loader-Campaign-7e8131a283d50a0f13d43ae5f1d0058b.

[44] Plaskoň, P. Vysoce výkonná platforma pro účely výzkumu malwaru. Brno, CZ, 2019.
Master’s thesis. University of Technology Brno, Faculty of information technology.

[45] Plaskoň, P. and Zemek, P. Tagger oveview. Internal documentation of Avast
Software.

[46] Plíva, R., Kuznetsov, D., Chrysaidos, N., Jursa, D., Vejmelka, M. et al.
Overview of threat-data systems. Internal documentation of Avast Software.

[47] Rodriguez, C., Baez, M., Daniel, F., Casati, F., Trabucco, J. et al. REST
APIs: A Large-Scale Analysis of Compliance with Principles and Best Practices.
June 2016, p. 21–39. DOI: 10.1007/978-3-319-38791-8_2.

[48] Salunke, S. S. Selenium Webdriver in Python: Learn with Examples. 1st ed. North
Charleston, SC, USA: CreateSpace Independent Publishing Platform, 2014. ISBN
1497337364.

[49] Stigler, S. and Burdack, M. A Practical Approach of Different Programming
Techniques to Implement a Real-time Application using Django. ATHENS
JOURNAL OF SCIENCES. February 2020, vol. 7, p. 43–66. DOI: 10.30958/ajs.7-1-4.

[50] Trautman, L. and Ormerod, P. Wannacry, Ransomware, and the Emerging
Threat to Corporations. SSRN Electronic Journal. January 2018. DOI:
10.2139/ssrn.3238293.

[51] Turnquist, G. Python Testing Cookbook. Packt Publishing, 2011. ISBN
978-1-849514-66-8.

[52] Virgilio, R., Maccioni, A. and Torlone, R. Model-Driven Design of Graph
Databases. October 2014, p. 172–185. DOI: 10.1007/978-3-319-12206-9_14.

[53] Wirawan, P., Riyanto, D., Nugraheni, D. and Yasmin, Y. Graph Database
Schema for Multimodal Transportation in Semarang. Journal of Information Systems
Engineering and Business Intelligence. October 2019, vol. 5, p. 163. DOI:
10.20473/jisebi.5.2.163-170.

[54] Zhauniarovich, Y., Khalil, I., Yu, T. and Dacier, M. A Survey on Malicious
Domains Detection through DNS Data Analysis. May 2018.

68

https://exchange.xforce.ibmcloud.com/collection/Mirai-Botnet-Loader-Campaign-7e8131a283d50a0f13d43ae5f1d0058b
https://exchange.xforce.ibmcloud.com/collection/Mirai-Botnet-Loader-Campaign-7e8131a283d50a0f13d43ae5f1d0058b


Appendix A

DVD Contents

• cadet/ - Source code of the application

• tests/ - Unit, integration, and end-to-end tests

• scripts/ - Supporting and deployment scripts

• support/ - Data necessary for deployment of the service

• dt_documentation/ - Source and PDF file of technical report

• requirements.txt - List of all required Python packages

• config.ini - The main configuration file

• Dockerfile - Configuration of the steps for image builds

• docker-compose.yml - Configuration of the containers

• pytest.ini - Configuration of the test framework

• Makefile

• README.md

69


	Introduction
	Threat Intelligence
	Goals of Threat Intelligence
	Threat Analysis
	Static Analysis
	Dynamic Analysis

	Threat Classification
	Severity
	Malware Types
	Malware Families

	Malware Campaigns
	Types of Malware Campaings
	Historical Malware Campaigns


	Threat-Data Sources
	Reputation Systems
	Anti-Rootkit Systems
	Web-Threat Systems
	Mobile-Threat Systems
	Tagging System
	Clustering System
	Graph Database

	Message Platform Apache Kafka
	Architecture of the Message Platform
	Protocol Buffers
	Architecture of Threat-Data System Communication

	Cadet - A Real-Time Campaign Detector
	Input Data and Messages
	Classification and Campaign Detection
	Validation of Results
	Monitoring and Alerting

	Implementation
	Used Technologies
	Event Consumption
	API
	Dashboard
	Campaign Data
	Alerting and Monitoring

	Experimentation
	Experimentation Scope
	Internal Sources of Campaign Reports
	External Sources of Campaign Reports

	Campaign Detection Evaluation
	Threat-Data Sources Evaluation
	Detection Rules Evaluation
	Detection Statistics
	Real World Campaigns

	Domain Feed Comparison

	Testing
	Testing Interface and Scope
	Unit Tests
	Integration Tests
	End-to-End Tests

	Future Improvements
	Property Classification and Artifacts
	Campaign Connections
	Honeypots Integration
	Alerting and Report Generation
	Scalability and Deployment
	Event Processing and Bindings

	Conclusion
	Bibliography
	DVD Contents

