
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

CANONICAL DERIVATIONS IN PROGRAMMED
GRAMMARS

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE PETR ZEMEK
AUTHOR

BRNO 2008

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

KANONICKÉ DERIVACE PROGRAMOVANÝCH GRA-
MATIK
CANONICAL DERIVATIONS IN PROGRAMMED GRAMMARS

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE PETR ZEMEK
AUTHOR

VEDOUCÍ PRÁCE Prof. RNDr. ALEXANDER MEDUNA, CSc.
SUPERVISOR

BRNO 2008

Abstrakt
V této práci jsou studovány kanonické derivace (se zaměřeńım na nejlevěǰśı derivace) v pro-
gramovaných gramatikách a rozsah levého omezeńı. Je ukázáno, že zavedeńım n-limito-
vaných derivaćı v programovaných gramatikách tak, jako byly zavedeny pro stavové gra-
matiky, dostaneme nekonečnou hierarchii jazykových tř́ıd vyplývaj́ıćı z n-limitovaných pro-
gramovaných gramatik, takže rozsah levého omezeńı ovlivňuje generativńı śılu n-limito-
vaných programovaných gramatik. Tento výsledek má význam pro syntaktickou analýzu
založenou na programovaných gramatikách.

Kĺıčová slova
Programovaná gramatika, kanonické derivace, nejlevěǰśı derivace, n-limitované derivace,
stavová gramatika, neomezená stavová gramatika, nekonečná hierarchie jazykových tř́ıd.

Abstract
This work studies canonical derivations (with focus on leftmost derivations) in programmed
grammars and left restriction range. It is shown that if we introduce n-limited derivations
in programmed grammars as they were defined for state grammars, we get an infinite
hierarchy of language families resulting from n-limited programmed grammars, so the left
restriction range affects the generative power of n-limited programmed grammars. This
result is significant for syntactical analysis based on programmed grammars.

Keywords
Programmed grammar, canonical derivations, leftmost derivations, n-limited derivations,
state grammar, unrestricted state grammar, infinite hierarchy of language families.

Citace
Petr Zemek: Canonical Derivations in Programmed Grammars, bakalářská práce, Brno,
FIT VUT v Brně, 2008

Canonical Derivations in Programmed Grammars

Prohlášeńı
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedeńım prof. Alexan-
dra Meduny. Uvedl jsem všechny literárńı prameny a publikace, ze kterých jsem čerpal.

. .
Petr Zemek

May 10, 2008

Poděkováńı
Na tomto mı́stě bych rád poděkoval mému vedoućımu prof. Alexandru Medunovi za odborné
vedeńı, za poskytnuté rady a konzultace a za ochotu a čas, který mi při tvorbě práce věnoval.

c© Petr Zemek, 2008.
Tato práce vznikla jako školńı d́ılo na Vysokém učeńı technickém v Brně, Fakultě in-
formačńıch technologíı. Práce je chráněna autorským zákonem a jej́ı užit́ı bez uděleńı
oprávněńı autorem je nezákonné, s výjimkou zákonem definovaných př́ıpad̊u.

Contents

1 Introduction 2

2 Preliminaries 3
2.1 Mathematical Background . 3

2.1.1 Sets . 3
2.1.2 Relations and Functions . 4

2.2 Alphabet, Words and Languages . 5
2.3 Grammars and Language Families . 6

2.3.1 Phrase-structure Grammar (Type 0) 6
2.3.2 Context-sensitive Grammar (Type 1) 7
2.3.3 Context-free Grammar (Type 2) . 7
2.3.4 Language Families and Chomsky Classification 7

3 Programmed Grammars 9
3.1 Programmed Grammar . 9
3.2 Programmed Grammar With ε-rules . 11
3.3 Programmed Grammar With Appearance Checking 11
3.4 Generative Power . 12

4 Canonical Derivations 14
4.1 Leftmost Derivations of Type 1 . 15
4.2 Leftmost Derivations of Type 2 . 15
4.3 Leftmost Derivations of Type 3 . 17

5 Left Restriction Range and Its Consequences 18
5.1 State Grammars . 18

5.1.1 State Grammar . 18
5.1.2 Unrestricted State Grammar . 19

5.2 n-limited Derivations . 20
5.3 Results . 20

5.3.1 Equivalence of Ln-lim(PG) and Ln-lim(uSG) 20
5.3.2 Infinite Hieararchy of Language Families 24

5.4 Significance for Syntactical Analysis . 26

6 Conclusion 28
6.1 Open Problems . 28

1

Chapter 1

Introduction

In the formal language theory, especially in the area of parsing and compilers, there always
has been a tendency to create a model, which will be based on context-free rules (because
they are simple and easy to use), but will have a higher generative power than context-free
grammars. Sure, one can use context-sensitive grammars or even unresticted grammars,
but these models are too complex for the use in syntactical analysis and related fields.

In 1967, D. Rosenkratz introduced the programmed grammar [15, 16]. This grammar has
only context-free rules, however, it regulates the derivation process (sequential application
of rules) by restricting and specifying which rules can be used after some particular rule
is used. It was shown that by restricting and regulating the derivation process this way
the generative capacity highly increases, so we are able to generate all languages that are
accepted by Turing machines.

Many other types of regulation were studied, for example S. Abraham proposed the matrix
grammar [1] and the random context grammar was introduced [19]. These three types
of regulation were investigated in details in [5]. At first, there was an enthusiasm for
these grammars because the advantages were obvious. However, after few years, a slight
“disillusion” appeared because it was proved that if we use only canonical (leftmost or
rightmost) derivations, we decrease the generative power of programmed grammars to the
family of languages generated by context-free grammars [5].

So, a natural question arises – why then use this kind of a regulation (programmed grammar)
if we loose the advantage of higher generative power and get the same as by using context-
free grammars?

The main goal of this work is to reduce the effect of this restriction and “improve” this
result by studying the left restriction range and n-limited derivations. In Chapter 2, basic
mathematical and grammar preliminaries are given. Then, in Chapter 3, the programmed
grammar is defined along with its modifications and summary of the generative power of
these grammars. Cannonical derivations in programmed grammars, with focus on leftmost
derivations, are discussed in Chapter 4. Main results are presented in Chapter 5, where left
restriction, n-limited derivations and its consequences are studied. Also, a significance for
syntactical analysis is given. Then, in the last Chapter 6, obtained results are sumarized,
open problems are given and possible further project research is discussed.

2

Chapter 2

Preliminaries

In this chapter, I will describe used terminology and remaind fundamental terms from
the area of formal language theory. Section 2.1 describes the fundamental mathematical
notations, concepts and techniques used in my work. Then, in Section 2.2, the meaning
of an alphabet, words, languages and operations over them is given. Finally, Section 2.3
reviews the basic of grammars, which are classified into the Chomsky classification. This
whole chapter is based on [12, 17, 10, 14], so for further information, please consult these
books.

2.1 Mathematical Background

2.1.1 Sets

A set is a collection of elements, without any structure other than membership. To indicate
that x is an element of the set S, we write x ∈ S. The statement that x is not in S is
written as x /∈ S. The cardinality of S, denoted by |S|, is the number of members of S.
The set that has no members is the empty set, denoted by ∅; note that |∅| = 0. If a set S
has a finite number of members, then S is a finite set. Otherwise, S is an infinite set.

A set S is specified by enclosing some description of its elements in curly brackets; for
example, the set of three integers (1, 2 and 3) is shown as

S = {0, 1, 2}.

Ellipses are used whenever the meaning is clear. Thus, {a, b, . . . , z} stands for all the lower-
case letters of the English alphabet. When the need arises, we use more explicit notation,
in which a set S is specified by a property π so that S contains all elements satisfying π
and this specification has the following format:

S = {x : π(x)}.

For example, the set of all even integers can be denoted by S = {i : i is even}.

3

The usual set operations are union (∪), intersection (∩) and difference (−), defined as

S1 ∪ S2 = {x : x ∈ S1 or x ∈ S2},
S1 ∩ S2 = {x : x ∈ S1 and x ∈ S2},
S1 − S2 = {x : x ∈ S1 and x /∈ S2}.

Another basic operation is complementation. The complement of a set S is denoted by S.
To make this meaningful, we need to know what the universal set U of all possible elements
is. If U is specified, then

S = {x : x ∈ U, x /∈ S}.

A set S1 is said to be a subset of S if every element of S1 is also an element of S. We write
this as

S1 ⊆ S.

If S1 ⊆ S, but S contains an element not is S1, we say that S1 is a proper subset of S; we
write this as

S1 ⊂ S.

If two sets S1 and S2 have no common element, that is, S1 ∩ S2 = ∅, then the sets are said
to be disjoint. If S1 ⊆ S2 and S2 ⊆ S1, then S1 and S2 are said to be equivalent and we
write S1 = S2. Otherwise, they are said to be nonequivalent and we write S1 6= S2. A given
set normally has many subsets. The set of all subsets of a set S is called the powerset of S
and is denoted by 2S . Observe that 2S is a set of sets and sets of this kind are customarily
called families of sets, rather than set of sets.

When the elements of a set S are ordered sequences of elements from other sets, such sets
are said to be the Cartesian product of other sets. For the Cartesian product of n sets,
which itself is a set of ordered n-tuples, we write

S = S1 × S2 × · · · × Sn = {(s1, s2, . . . , sn) : s1 ∈ S1, s2 ∈ S2, . . . , sn ∈ Sn}.

2.1.2 Relations and Functions

An n-ary relation δ over the sets S1, S2, . . . , Sn is any subset of their Cartesian product,
that is,

δ ⊆ S1 × S2 × · · · × Sn.

A binary relation ρ from S1 to S2, which is a special case of an n-ary relation for n = 2, is
any subset of S1 × S2, that is,

ρ ⊆ S1 × S2.

If S1 = S2, then we usually say that ρ is a relation on S1 or relation over S1. Because of
simplicity, I will consider only binary relations throughout this subsection. Properties of
n-ary relations would be defined accordingly.

4

A function from S1 to S2 is a relation φ from S1 to S2 such that for every x ∈ S1,

|{y : y ∈ S2, (x, y) ∈ φ}| ≤ 1.

Let φ be a function from S1 to S2. If for every y ∈ S2, |{x : x ∈ S1, (x, y) ∈ φ}| ≤ 1, φ is an
injection. If for every y ∈ S2, |{x : x ∈ S1, (x, y) ∈ φ}| ≥ 1, φ is a surjection. If φ is both a
surjection and an injection, φ represents a bijection.

Instead of (x, y) ∈ ρ, we often write x ∈ ρ(y) or xρy; in other words, (x, y) ∈ ρ, xρy, and
x ∈ ρ(y) are used interchangeably. If ρ is a function, we usually write x = ρ(y). Let ρ be a
relation over a set S2. For k ≥ 1, the k-fold product of ρ, ρk, is recursively defined as

(1) xρ1y if and only if xρy,
(2) xρky if and only if xρz and zρk−1y,

for some z and k ≥ 2. The transitive closure of ρ, ρ+, is defined as xρ+y if and only if xρky
for some k ≥ 1, and the reflexive and transitive closure of ρ, ρ∗, is defined as xρ∗y if and
only if xρky for some k ≥ 0.

2.2 Alphabet, Words and Languages

An alphabet is a finite, nonempty set of elements, which are called symbols. A sequence of
symbols forms a word (string is a synonymous with word). The empty word, denoted by
ε, is the word that contains no symbols; note that |ε| = 0.

Let x and y be two words over an alphabet Σ. Then, x.y, usually written as xy, is the
concatenation of x and y. For an alphabet, Σ, Σ∗ denotes the set of all strings over Σ
(including ε). Set Σ+ = Σ∗ − {ε}. Let x be a word over an alphabet Σ. The length of x is
the number of all symbols in x and it is denoted by |x|.

Let n be a nonnegative integer and x a word over an alphabet Σ. Then xn is a word over
Σ defined by

(1) x0 = ε,
(2) xn = xxn−1.

A language L over Σ is a set of words over Σ. The empty language is denoted by ∅. The
universal language over Σ, which is the language consisting of all words over Σ, is Σ∗. For
a language L, we denote by |L| the cardinality of L. The concatenation of two languages
L1, L2 ⊆ Σ∗, denoted by L1.L2 and usually written as L1L2, is the set L1L2 = {w1w2 : w1 ∈
L1 and w2 ∈ L2}.

For an integer n ≥ 0 and a language L, the nth power of L, denoted by Ln, is defined by

(1) L0 = {ε},
(2) Ln = Ln−1L.

5

The star (Kleene closure) of a language L, denoted by L∗, is the set

L∗ =
∞⋃
i=0

Li.

Similarly, we define

L+ =
∞⋃
i=1

Li.

2.3 Grammars and Language Families

This section reviews the basics of grammars. Specifically, it provides definitions of phrase-
structure, context-sensitive, and context-free grammars along with language families they
generate, which are classified into the Chomsky classification.

2.3.1 Phrase-structure Grammar (Type 0)

Definition 2.3.1. A phrase-structure or a type 0 Chomsky grammar (see [12]) is a quadru-
ple

G = (N,T, P, S),

where

N is an alphabet of nonterminals;

T is an alphabet of terminals (N ∩ T = ∅);

S ∈ N is the starting nonterminal;

P is a finite relation from (N ∪ T)∗N(N ∪ T)∗ to (N ∪ T)∗.

Pairs (u, v) ∈ P are called productions or rewriting rules (abbreviated rules) and are written
as r : u → v, where r is a rule label associated with this rule. Accordingly, P is called the
set of all rules in G. The total alphabet of G is V = N ∪T . A rewriting rule r : u→ v ∈ P ,
which holds v = ε, is called an ε-rule or an erasing rule. If there is no such rule in P , then
we say that the grammar is ε-free. Let lab(P) denote the set of all labels of rules from P .

The direct derivation relation induced by G is a binary relation between words over V ∗,
denoted by ⇒G, and defined as

α⇒G β [r],

if and only if α = xuy, β = xvy and r : u → v ∈ P , where α, β, x, y ∈ V ∗. When no
confusion exists, we simplify α ⇒G β [r] to α ⇒ β. The derivation relation induced by
G, denoted ⇒∗G, is the reflexive and transitive closure of the relation ⇒G. Further, ⇒+

G

denotes the transitive closure of ⇒G. If S ⇒∗G x for some x ∈ V ∗, x is called a sentential
form.

6

The language generated by G, denoted by L(G), is

L(G) = {w : w ∈ T ∗, S ⇒∗G w}.

The family that is generated by this type of grammar is the family of all recursively-
enumerable languages, denoted by RE.

2.3.2 Context-sensitive Grammar (Type 1)

Definition 2.3.2. A context-sensitive (type 1) grammar (see [12]) is a type 0 grammar,

G = (N,T, P, S),

such that each rule u→ v ∈ P satisfies |u| ≤ |v|. The direct derivation relation, derivation
relation and language generated by this grammar is defined in the same manner as in the
phrase-structure grammar.

A context-sensitive language is a language generated by a context-sensitive grammar. The
family of all context-sensitive languages is denoted by CS.

2.3.3 Context-free Grammar (Type 2)

Definition 2.3.3. A context-free (type 2) grammar (see [12]) is a type 0 grammar,

G = (N,T, P, S),

such that each rule u → v ∈ P satisfies u ∈ N (|u| = 1). The direct derivation relation,
derivation relation and language generated by this grammar is defined in the same manner
as in the phrase-structure grammar.

A context-free language is a language generated by a context-free grammar. The family of
all context-free languages is denoted by CF.

2.3.4 Language Families and Chomsky Classification

Noam Chomsky, a founder of formal language theory, provided an initial classification into
four language types, type 0 to type 3 [2]. Grammars of type 0 to type 2 were defined in the
previous sections and the grammar of type 3 is omitted on purpose, because it is not related
to this work. Only note that this type of a grammar is called right-linear and generates
the family of all regular languages, denoted by REG.

For the families of languages generated by right-liner, context-free, context-sensitive and
phrase-structure grammars, it holds:

Theorem 2.3.4. (See [12]) REG ⊂ CF ⊂ CS ⊂ RE.

Thus, each language family of type i is a proper subset of the family of type i − 1. A
diagram 2.1 exhibits the relation clearly; it shows the original Chomsky hierarchy.

7

RE

CS

CF

REG

Figure 2.1: The Chomsky Hierarchy of Languages.

If some grammars define the same language, they are referred to as equivalent grammars.

8

Chapter 3

Programmed Grammars

Programmed grammar (in its basic form) was introduced by D. Rosenkratz in 1967 in his
PhD thesis [15] and further studied in [16]. The main idea was to create a grammar
originating from a context-free grammar (because context-free rules are simple and easy to
use), but control the derivation process by prescribing the order in which individual rules
are applied, thus obtaining a kind of contextual dependance of rules, which results into
higher generative power of these grammars.

Derivation process is controled in the following way. Each context-free rule has assigned a
set of rules (to be precise, rule labels) and after applying some rule, the next rule must be
chosen from the assigned set of the last applied rule. I will, informally, show an example.
Let ABC (A, B and C are nonterminals) be a sentential form derived by some programmed
grammar. Then, the nonterminal A is rewritten to aA (a is a terminal), thus obtaining
aABC. We would like to generate the string aabbcc, so we prescribe that B must be
rewriten to bB after rewriting A and C must be rewritten to cC after B is rewritten. Note
that this is not possible in a context-free grammar, because there is no restriction which
rule should be used in the next step, so aA could be used again and again, thus obtaining,
for example, aaaaaaabbcc, which is definitely not what we wanted.

Formal definition of a programmed grammar is given in Section 3.1, with the full example
of a grammar that was informally presented in the previous paragraph. In Sections 3.2
and 3.3, two modifications of a programmed grammar are defined. Finally, in Section 3.4,
the generative power (in context of the Chomsky classification) of all defined types of a
programmed grammar is shown.

3.1 Programmed Grammar

Definition 3.1.1. A programmed grammar (see [5]) is a quadruple

G = (N,T, P, S),

where

N , T and S are as in a context-free grammar (V = N ∪ T is the total alphabet);

9

P ⊆ L × N × V + × 2L is a finite relation, where L is a finite set of labels so that
lab(P) = L.

An element (r,A, v, σ(r)) ∈ P is (as in a phrase-structure grammar) called a rewriting
production or a rewriting rule (abbreviated rule) and is usually written as (r : A→ v, σ(r)),
where r : A→ v is a context-free rule labeled by r and σ(r) is a set of rule labels associated
with this rule called success field.

Given a programmed grammar G = (N,T, P, S), let ⇒ be a relation on V + defined as
follows: Let x, y ∈ V + be two sentential forms in G, then we write x ⇒ y if and only if
either

a) x = S, y = v, no rules have been applied and there is a rule (r : S → v, σ(r)) in P for
some v ∈ V +.

or

b) x = x1Ax2, y = x1vx2, A ∈ N , x1, x2 ∈ V ∗, last applied rule was r and there is a rule
(s : A→ v, σ(s)) ∈ P for some v ∈ V +, where s ∈ σ(r).

For x, y ∈ V +, write x ⇒∗ y if either x = y or there exists x0, . . . , xk such that x0 = x,
xk = y, and xi ⇒ xi+1 for each i, 0 ≤ i ≤ k − 1. The sequence x0, . . . , xk is called a
derivation (of length k) and is denoted by x0 ⇒ · · · ⇒ xk. Thus, ⇒∗ is the reflexive and
transitive closure of ⇒ and we define ⇒+ to be the transitive closure of ⇒.

The language generated by G is

L(G) = {w : w ∈ T+, S ⇒∗ w}.

Example 3.1.2. Let G = ({S,A,B,C}, {a, b, c}, P, S) [20] be a programmed grammar
with the following rules in P :

(r1 : S → ABC, {r2, r5}),

(r2 : A→ aA, {r3}),

(r3 : B → bB, {r4}),

(r4 : C → cC, {r2, r5}),

(r5 : A→ a, {r6}),

(r6 : B → b, {r7}),

(r7 : C → c, ∅).

This grammar generates the noncontext-free language {anbncn : n ≥ 1}. Note that σ(r7) =
∅, because after the rule r7 is used, there are no nonterminals left in a sentential form.

The string aabbcc is produced via the following derivation: S ⇒ ABC [r1] ⇒ aABC [r2]
⇒ aAbBC [r3] ⇒ aAbBcC [r4] ⇒ aabBcC [r5] ⇒ aabbcC [r6] ⇒ aabbcc [r7].

There are two special types of programmed grammars, which can be also considered. How-
ever, they are presented here only for completeness and that there will be references to
them in Section 3.4.

10

3.2 Programmed Grammar With ε-rules

In the original definition of a programmed grammar, rules are of the form (r : A→ v, σ(r)),
where v ∈ V +, which disallowes ε-rules. Hence, a programmed grammar with ε-rules is
defined the same way as a programmed grammar, but with v ∈ V ∗.

Definition 3.2.1. A programmed grammar with ε-rules (see [5]) G = (N,T, P, S) is a
programmed grammar where P is defined as a finite relation P ⊆ L×N × V ∗ × 2L (L is,
as i a programmed grammar, a finite set of labels so that lab(P) = L).

3.3 Programmed Grammar With Appearance Checking

In a programmed grammar, it could be sometimes desirable to rewrite, for example, all
occurences of a nonterminal A in a sentential form, and, after every A is rewritten, continue
rewriting by using another rule. Or check, whether there is a nonterminal B in a sentential
form and if so, use some rule, otherwise, use another rule. However, no such actions are
possible in programmed grammers, because once you cannot use any rule from the success
field, the derivation ends (“get stuck”). Hence, to allow such actions, a new modification
of a programmed grammar was introduced, called programmed grammar with appearance
checking.

Informally, a programmed grammar with appearance checking is a programmed grammar
with another set associated with each rule, called failure field. In a derivation, you have
to apply rules from the success field, but if you cannot apply any such rule, you must
apply some rule from the failure field. Therefore, if you want to rewrite all occurences of a
nonterminal A in a sentential form, you introduce a rule (r1 : A→ v, {r1}, {r2}), so you have
to use this rule repeatedly until no A can be rewritten (that means the application of the
rule r1 failed), so you will use the rule r2 from the failure field. Similarly, to check whether
there is a nonterminal B in a sentential form, introduce a rule (q1 : B → B, {q2}, {q3}).
Using this rule, you can perform that check for the appearance of B, and, depending on the
result, use q2 or q3, respectively.

Definition 3.3.1. A programmed grammar with appearance checking (see [5]) is a quadruple
G = (N,T, P, S), where N , T and S are as in a context-free grammar (V = N ∪ T is the
total alphabet) and P ⊆ L×N × V + × 2L × 2L is a finite relation, where L is a finite set
of labels so that lab(P) = L.

An element (r,A, v, σ(r), ϕ(r)) ∈ P is (as in a programmed grammar) called a rule and is
usually written as (r : A→ v, σ(r), ϕ(r)), where r : A→ v and σ(r) have the same meaning
as in a programmed grammar and ϕ(r) is another set of rule labels called failure field.
However, if ϕ(r) = ∅ holds for every r ∈ lab(P), then G is equal to a programmed grammar
without appearance checking, because if we omit the failure field of all rules, we got a
programmed grammar.

Given a programmed grammar with appearance checking G = (N,T, P, S), let ⇒ be a
relation on V + defined as follows: Let x, y ∈ V + be two sentential forms in G. Then we
write x⇒ y if and only if either

a) x = S, y = v, no rules have been applied and there is a rule (r : S → v, σ(r), ϕ(r)) ∈ P
for some v ∈ V +.

11

or

b) x = x1Ax2, y = x1vx2, A ∈ N , x1, x2 ∈ V ∗, last applied rule was r and there is a rule
(s : A→ v, σ(s), ϕ(s)) ∈ P for some v ∈ V +, where s ∈ σ(r).

or

c) x = y, last applied rule was r, there is no rule (s : A → v, σ(s), ϕ(s)) ∈ P , s ∈ σ(r),
that is applicable to x and in the next step we have to use some rule t ∈ ϕ(r).

In other words, either the rule r : A → v is effectively used and then we use a rule with a
label in σ(r) in the next step, or r : A→ v cannot be applied and we pass on to a rule with
label in ϕ(r) for the next step.

In standard manner, we define ⇒m, ⇒∗ and ⇒+ for some m ≥ 0. The language generated
by the grammar G is L(G) = {w : w ∈ T+, S ⇒∗ w}.

A programmed grammar with appearance checking and with ε-rules would be defined in the
same way as a programmed grammar with ε-rules, so the definition is omitted.

Example 3.3.2. Consider a programmed grammar G = ({S,A}, {a}, P, S) [5], where P
consists of the rules

(r1 : S → AA, {r1, r2}, {r2, r3}),

(r2 : A→ S, {r2}, {r1}),

(r3 : A→ a, {r3}, ∅).

Because σ(ri) = ri for i = 1, 2, 3, the rules S → AA, A → S and A → a must be used
as many times as possible. Therefore, starting from Sn for some n ≥ 1, we must pass
to A2n and then, using the rule r2, to S2n, or using the rule r3, to a2n. Each such cycle
consisting of use of r1 and r2 doubles the number of symbols. In conclusion, we obtain the
noncontext-free language L(G) = {a2n

: n ≥ 1}.

The string aaaa is produced via the following derivation: S ⇒ AA [r1] ⇒ SA [r2] ⇒ SS
[r2] ⇒ AAS [r1] ⇒ AAAA [r1] ⇒ aAAA [r3] ⇒ aaAA [r3] ⇒ aaaA [r3] ⇒ aaaa [r3].

3.4 Generative Power

It is natural to ask, what is the generative power of these grammars, in relation with the
Chomsky classification of languages. Let L (PG) denote the family of languages generated
by programmed grammars, L (PG, ε) denotes the family of languages generated by pro-
grammed grammars with ε-rules, L (PG, ac) denotes the family of languages generated by
programmed grammars with appearance checking and L (PG, ε, ac) denotes the family of
languages generated by programmed grammars with ε-rules and with appearance checking.
Then, Diagram 3.1 holds [3].

If two families are connected by a dotted arrow (solid arrow), then the upper family includes
(includes properly) the lower family; if two families are not connected then they are not
necessarily incomparable.

12

CF

CS

RE

L (PG)

L (PG, ε)L (PG, ac)

L (PG, ε, ac)

Figure 3.1: Generative Power of Programmed Grammars

From Diagram 3.1 it is clear that programmed grammars are more powerful than context-
free grammars and programmed grammars with ε-rules and with appearance checking are
as powerful as phrase-structure grammars. The relation between programmed grammars
with and without ε-rules, respectively, is not yet known and it will be discussed in the
conclusion (except the inclusion L (PG) ⊆ L (PG, ε), which is trivial and follows directly
from the definition of a programmed grammar with ε-rules).

13

Chapter 4

Canonical Derivations

In programmed grammars, there is no restriction on which nonterminal a rule has to be
applied; any nonterminal which can be rewritten may be rewritten. If we restrict the
derivation process to rewrite only extreme nonterminals, we obtain leftmost or rightmost
derivations, respectively. It can be shown [12], that in context-free grammars, we can
(without loss of generality) consider only leftmost or rightmost derivations. However, as
will be discussed later, this is not true in programmed grammars. As it makes no difference
in what concerns the generative capacity (and thus other properties) [5], only leftmost
derivations will be discussed.

In [5], three basic types of leftmost derivations were considered. The presented results
were improved, some open problems were solved and new types of leftmost derivations
were considered in [4, 6]. I will here only consider, describe and summarize results of the
basic three types of leftmost derivations with specialization on the first type, which has the
highest importance for this work. These three types of leftmost derivations are discussed in
Sections 4.1, 4.2 and 4.3, respectively. First, a basic idea (taken from [5]) of each derivation
type will be presented, then an informal description (to better understand the differences
between particular types), definition and theorems (how do particular types of leftmost
derivations affect the generative power of programmed grammars) will follow.

I will also present an example of a programmed grammar and show how can particular types
of leftmost derivations affect the generated language. The following programmed grammar
is a transformed and modified version of the original matrix grammar presented in [11].

Example 4.0.1. Let H = ({S,A,C,X, Y }, {a, b, c, d}, P, S) be a programmed grammar
with the following rules in P :

(r1 : S → XACC, {r2, r3, r4}),

(r2 : A→ aAb, {r3}),

(r3 : C → cC, {r2, r3, r4}),

(r4 : A→ ab, {r5}),

(r5 : C → c, {r6}),

(r6 : C → Y, {r7}),

(r7 : X → d, {r8}),

(r8 : Y → d, ∅).

If we place no restriction on which nonterminal in a single derivation step must be rewritten,
then this grammar generates the language L(H) = {danbncidcj : n ≥ 1, (i ≥ 0 and j ≥ 1)
or (i ≥ 1 and j ≥ 0), i+ j ≥ n}.

14

The string dabcdcc is produced via the following derivation: S ⇒ XACC [r1] ⇒ XAcCC
[r3] ⇒ XAcCcC [r3] ⇒ XabcCcC [r4] ⇒ XabcCcc [r5] ⇒ XabcY cc [r6] ⇒ dabcY cc [r7]
⇒ dabcdcc [r8].

Throughout following examples, the language generated by the grammar H under leftmost
derivations of type k, k ∈ {1, 2, 3}, will be denoted by Lleft-k(H).

4.1 Leftmost Derivations of Type 1

Main idea. At each step of a derivation the leftmost occurence of a nonterminal has to be
rewritten.

This (most restrictive) restriction is the same as in context-free grammars under leftmost
derivations, so regardless of the set of rules from the success field, the leftmost occurence of
a nonterminal has to be rewritten. This can result (as will be shown in Example 4.1.2) into
situations, where there is no applicable rule with its left-hand side equal to the leftmost
nonterminal.

Definition 4.1.1. Let G be a programmed grammar. A derivation in G is called leftmost of
type 1 (see [5]) if each rule used in this derivation either rewrites the leftmost nonterminal
occurence in the current string, or (this is important for appearence checking mode of
derivation) it cannot be applied to this leftmost nonterminal occurence and then we say
that the rule is not applicable to the whole string.

By Lleft-1(G) we denote the language generated by G in this way, and we denote the families
of languages generated in this way by L (PG, left-1), L (PG, ε, left-1), L (PG, ac, left-1)
and L (PG, ε, ac, left-1).

Example 4.1.2. Consider the programmed grammar H from Example 4.0.1. In every
derivation, S will be first rewritten to XACC by using the rule r1, so X is the leftmost
nonterminal in this sentential form. However, there is no rule s ∈ σ(r1) with X on its left-
hand side, so the derivations ends here. Therefore, the language generated under leftmost
derivations of type 1 by H is Lleft-1(H) = ∅.

Theorem 4.1.3. (See [6])

L (PG, left-1) = L (PG, ε, left-1) = L (PG, ac, left-1) = L (PG, ε, ac, left-1) = CF.

So, this leftmost restriction highly decreases the generative power of programmed grammars.
In Chapter 5, in order to “improve” this result, I will consider left restriction range – that
means, informally, during each derivation step, at most the nth nonterminal (from the left)
must be rewritten for some n ≥ 1.

4.2 Leftmost Derivations of Type 2

Main idea. At each step of a derivation the leftmost occurence of a nonterminal which
can be rewritten (note that in programmed grammars only certain nonterminal occurences
can be rewritten) has to be rewritten.

15

Contrary to leftmost derivations of type 1, this type of leftmost derivations is not that strict.
If the leftmost nonterminal cannot be rewritten, we proceed to the second nonterminal from
the left and so on, until we find the first nonterminal that can be rewritten and we rewrite
it.

Definition 4.2.1. Let G = (N,T, P, S) be a programmed grammar (a programmed gram-
mar with appearance checking, respectively). We say that a derivation according to G is
leftmost of type 2 (see [5]) if it develops as follows:

a) Start with S and apply any rule (r : S → x, σ(r)) ∈ P ((r : S → x, σ(r), ϕ(r)) ∈ P ,
respectively).

b) If the current string y has been obtained from some string x by an effective use
of some rule p, then at the next step we use a rule p′ ∈ σ(p) such that y = y1Ay2,
(p′ : A→ v, σ(p)) ∈ P and there is no rule (p′′ : B → u, σ(p)) ∈ P such that p′′ ∈ σ(p),
y = y1

′By2
′, |y1

′| < |y1|, and the string obtained in this way is z = y1vy2 (we say
that y is rewritten in the leftmost manner by the rules of the set σ(p)), or (in case
of programmed grammars with appearance checking) if no rule p′ ∈ σ(p) can be used
for rewriting y, then we choose an arbitrary rule p′ ∈ σ(p) and we pass to rewrite y
in the leftmost manner by the rules of ϕ(p′).

c) Continue this way until a terminal string is obtained.

By Lleft-2(G) we denote the language generated by G in this way, and we denote the families
of languages generated in this way by L (PG, left-2), L (PG, ε, left-2), L (PG, ac, left-2)
and L (PG, ε, ac, left-2).

Example 4.2.2. Consider the programmed grammar H from Example 4.0.1. The starting
nonterminal S is always rewritten to XACC by using the rule r1, so X is the leftmost
nonterminal in this sentential form. As in the previous example, X cannot be rewritten, so
we consider the next nonterminal, which is A. We can either rewrite A by using r2 or r4, but
in every case, we get the same number of a, b and c, because we cannot (unlike in Example
4.0.1) use rule r3 to generate more c than a or b. This is because A is “everytime” the
leftmost nonterminal that can be rewritten, so we cannot skip it and rewrite C (unless we
have used r2 or r3). Also note that d will be generated from the last C in a sentential form,
because when we use rule r5 we have to rewrite the leftmost C. Therefore, the language
generated under leftmost derivations of type 2 by H is L(H) = {danbncnd : n ≥ 1}.

The string daabbccd is produced via the following derivation: S ⇒ XACC [r1]⇒ XaAbCC
[r2] ⇒ XaAbcCC [r3] ⇒ XaabbcCC [r4] ⇒ XaabbccC [r5] ⇒ XaabbccY [r6] ⇒ daabbccY
[r7] ⇒ daabbccd [r8].

Theorem 4.2.3. (See [6])

i) L (PG, left-2) = L (PG, ac, left-2) = CS

ii) L (PG, ε, left-2) = L (PG, ε, ac, left-2) = RE.

16

4.3 Leftmost Derivations of Type 3

Main idea. To use each rule in a leftmost manner, that is the leftmost appearence of its
left-hand member is rewritten.

The difference between this type of leftmost derivations and leftmost derivations of type 2 is
that here we do not have to first consider the current sentential form and then choose a rule,
more to the contrary, we first choose a rule and then we apply it to the leftmost nonterminal
equal to its left-hand side. So, for example, if we have ABBB as the current sentential
form, last used rule was r and we have rules (s1 : A → x, σ(s1)) and (s2 : B → y, σ(s1)) so
that in s1, s2 ∈ σ(r), we can choose any of them. But, if we choose s2, we have to rewrite
the leftmost B in the sentential form (in this case it is that B right next to A).

Definition 4.3.1. Let G be a programmed grammar ((a programmed grammar with ap-
pearance checking, respectively). A derivation according to G is called leftmost of type 3
(see [5]) if each rule used in it replaces the leftmost occurence of its left-hand member (if
no occurence of this symbol exists, then the rule is not applicable; it can be “applied” in
the appearance checking mode).

By Lleft-3(G) we denote the language generated by G in this way, and we denote the families
of languages generated in this way by L (PG, left-3), L (PG, ε, left-3), L (PG, ac, left-3)
and L (PG, ε, ac, left-3).

Example 4.3.2. Consider the programmed grammar H from Example 4.0.1. Unlike in
Example 4.0.1, here we can generate more c than a or b, because even if we have A as the
leftmost nonterminal (after X), we can rewrite C by using rule r3, but (this is important)
everytime only the leftmost C. Thus, the language generated under leftmost derivations of
type 3 by H is L(H) = {danbncmd : n ≥ 1,m ≥ n}.

The string dabcccd is produced via the following derivation: S ⇒ XACC [r1] ⇒ XAcCC
[r3] ⇒ XAccCC [r3] ⇒ XabccCC [r4] ⇒ XabcccC [r5] ⇒ XabcccY [r6] ⇒ dabcccY [r7]
⇒ dabcccd [r8].

Theorem 4.3.3. (See [6])

i) L (PG) ⊂ L (PG, left-3) ⊂ L (PG, ac, left-3) ⊂ CS

ii) L (PG, ε) ⊂ L (PG, ε, left-3) ⊂ L (PG, ε, ac, left-3) = RE

17

Chapter 5

Left Restriction Range and Its
Consequences

As was stated in Chapter 4, when we use only leftmost derivations (by leftmost derivations
I mean leftmost derivations of type 1), we decrease the generative power of programmed
grammars. In order to study the left restriction range, first a new type of a grammar
(called state grammar) along with a modification of this grammar is presented in Section
5.1 and then n-limited derivations are defined in Section 5.2. Main results of this work are
presented in Section 5.3. Finally, in Section 5.4, results significance for syntactical analysis
is given.

5.1 State Grammars

State grammars were introduced by T. Kasai in 1970 [7]. Informally, a state grammar is
a combination of a context-free grammar and of a finite automaton, because it generates
strings by using context-free rules, but also have states, like finite automata. So, at each
derivation step, a nonterminal is rewritten and the current state is changed. Another
interesting thing is that Kasai talks about configurations (like in automata), rather than
about sentential forms.

5.1.1 State Grammar

Definition 5.1.1. A state grammar (see [7]) is a sextuple

G = (N,T,W,P, S, p0),

where

N , T and S are as in a context-free grammar (V = N ∪ T is the total alphabet);

W is a nonempty finite set of states;

P ⊆W ×N ×W × V + is a finite relation;

18

p0 ∈W is the starting state.

An element (p,A, q, v) ∈ P is called a state production (abbreviated production or rule) and
is usually written as (p,A)→ (q, v), optionally labeled by a label, like l : (p,A)→ (q, v). A
nonterminal A is said to be applicable under a state p if (p,A) → (q, v) is in P for some
q ∈ Q and v ∈ V +.

Given a state grammar G = (N,T,W,P, S, p0), let ⇒ be a relation on W × V + defined as
follows: Let p ∈W and w = xAy ∈ V +. If this A is the leftmost occurence of an applicable
nonterminal in w under p and (p,A)→ (q, v) ∈ P , then we write (p, xAy)⇒ (q, xvy).

For x, y ∈W ×V +, write x⇒∗ y if either x = y or there exists x0, . . . , xk such that x0 = x,
xk = y, and xi ⇒ xi+1 for each i, 0 ≤ i ≤ k − 1. The sequence x0, . . . , xk is called a
derivation (of length k) and is denoted by x0 ⇒ · · · ⇒ xk. Thus, ⇒∗ is the reflexive and
transitive closure of ⇒ and we define ⇒+ to be the transitive closure of ⇒.

The language of G is

L(G) = {w : w ∈ T+, (p0, S)⇒∗ (q, w) for some q ∈W}.

For all w ∈ L(G), each pair (q, v) in a derivation (p0, S)⇒∗ (q, v)⇒∗ (r, w), where q, r ∈W
and v ∈ V + is called a configuration of G.

Example 5.1.2. Let G = ({S,X, Y }, {a, b}, {p0, p1, p2, p3, p4, p5}, P, S, p0) be a state gram-
mar with the following rules in P :

1 : (p0, S)→ (p0, XY),

2 : (p0, X)→ (p1, aX),

3 : (p1, Y)→ (p0, aY),

4 : (p0, X)→ (p2, bX),

5 : (p2, Y)→ (p0, bY),

6 : (p0, X)→ (p3, a),

7 : (p3, Y)→ (p0, a),

8 : (p0, X)→ (p4, b),

9 : (p4, Y)→ (p0, b).

This grammar generates the noncontext-free language {ww : w ∈ T+}. This is achieved by
first rewriting S to XY and then, using states, ensure that everytime X is rewritten to aX
or bX, change state to force rewrite of Y to aY or bY , respectively. Derivation is finished
by rewriting X to a or b and then Y to a or b, respectively.

The string abab is produced via the following derivation: (p0, S)⇒ (p0, XY) [1]⇒ (p1, aXY)
[2] ⇒ (p0, aXaY) [3] ⇒ (p4, abaY) [8] ⇒ (p0, abab) [9].

5.1.2 Unrestricted State Grammar

Definition 5.1.3. An unrestricted state grammar G = (N,T,W,P, S, p0) is a state gram-
mar with ⇒ defined as follows. Let p ∈ W and w = xAy ∈ V +. If (p,A) → (q, v) ∈ P ,
then (p, xAy)⇒ (q, xvy). Informally, during a single derivation step, G can rewrite any oc-
curence of an applicable nonterminal; that is, the case that x = x1Ax2 for some x1, x2 ∈ V ∗
is not ruled out, as opposed to the Definition 5.1.1.

19

5.2 n-limited Derivations

Informally, the meaning of n-limited derivations (also called n-leftmost derivations) is that
at each step of a derivation, at most the nth occurence of a nonterminal (from the left)
has to be rewritten, where n ≥ 1. This type of derivations was originally defined for state
grammars in [7], but the following definition applies also for programmed grammars and,
in the following sections, interesting properties resulting from the introduction of n-limited
derivations into programmed grammars will be shown.

Definition 5.2.1. Let G = (NG, TG, PG, SG) be a programmed grammar, H = (NH , TH ,
WH , PH , SH , pH0) be a state grammar and U = (NU , TU , WU , PU , SU , pU0) be an unre-
stricted state grammar, respectively, and let n be a positive integer. An n-limited derivation
(see [7]) is a derivation of the form α0

j(1)⇒ α1 . . .
j(r)⇒ αr such that j(i) ≤ n for each i, where

j(i) means that the j-th nonterminal is rewritten. In this case we write α0 n⇒∗ αr instead
of α0 ⇒∗ αr in order to express that it is made as an n-limited derivation. The languages
generated by G, H and U are denoted by Ln-lim(G), Ln-lim(H) and Ln-lim(U), respectively,
and defined as Ln-lim(G) = {w ∈ T+

G : SG n⇒∗ w}, Ln-lim(H) = {w ∈ T+
H : (pH0, SH) n⇒∗

(q, w) for some q ∈ WH} and Ln-lim(U) = {w ∈ T+
U : (pU0, SU) n⇒∗ (q, w) for some

q ∈WU}, respectively.

By Ln-lim(PG), Ln-lim(SG) and Ln-lim(uSG) we denote the families of languages gener-
ated by n-limited programmed grammars, n-limited state grammars and n-limited unre-
stricted state grammars, respectively.

5.3 Results

5.3.1 Equivalence of Ln-lim(PG) and Ln-lim(uSG)

This subsection establishes an equivalence between the family of languages generated by
n-limited programmed grammars and the family of languages generated by n-limited unre-
stricted state grammars.

Lemma 5.3.1. For all n ≥ 1, Ln-lim(uSG) ⊆ Ln-lim(PG).

Proof.

Construction. Let H = (N,T,W,P, S, p0) be an n-limited unrestricted state grammar,
V = N ∪ T . We construct an n-limited programmed grammar G = (N ∪ {SG}, T, PG, SG)
such that L(H) = L(G), where SG /∈ N is a new nonterminal and PG is constructed by
performing the following steps:

1. Denote all rules in P by labels 〈i〉, i ∈ {1, 2, . . . , |P |}.

2. Add (r0 : SG → S, σ(r0)) with σ(r0) = {ri : 〈i〉 : (p0, S)→ (q, v) ∈ P , q ∈W , v ∈ V +})
to PG.

3. For each rule 〈i〉 : (p,A) → (q, v) ∈ P , extend PG by (ri : A → v, σ(ri)) with σ(ri) =
{rj : 〈j〉 : (q,B)→ (m,u) ∈ P}, where p, q,m ∈W , A,B ∈ N and u, v ∈ V + for some
positive integers j ∈ {1, 2, . . . , |P |}.

20

Basic idea. G simulates H’s n-limited derivations and instead of states in H it uses success
fields to regulate the derivation process. There is an injection from P to PG because every
rule in P corresponds to a single rule in PG, but there is no rule which corresponds to the
first rule in PG (this rule is the only rule applicable to SG and thus it starts the derivation
process).

More precisely, let (p, x0A1x1 . . . Ahxh) n⇒ (q, x0A1x1 . . . Aj−1xj−1vxjAj+1xj+1 . . . Ahxh)
be an n-limited derivation in H using some rule 〈s〉 : (p,Aj) → (q, v), where p, q ∈ W , x0,
x1, . . . , xh ∈ T ∗, A1, A2, . . . , Ah ∈ N , v ∈ V + and 1 ≤ j ≤ n. Then, the corresponding n-
limited derivation in G would be x0A1x1 . . . Ahxh n⇒ x0A1x1 . . . Aj−1xj−1vxjAj+1xj+1 . . .
Ahxh using a rule (rs : Aj → v, σ(rs)), σ(rs) = {rk ∈ lab(PG) : 〈k〉 : (q, C) → (t, c) ∈ P for
some C ∈ N , c ∈ V + and t ∈W}.

Claim 5.3.2. If (p0, S) n⇒m (q, x0A1x1 . . . Ahxh) in H, then SG n⇒+ x0A1x1 . . . Ahxh in
G for some m ≥ 0, x0, x1, . . . , xh ∈ T ∗, A1, A2, . . . , Ah ∈ N and q ∈W .

This claim is established by induction on m.

Basis: Let m = 0. For (p0, S) n⇒0 (p0, S) in H there exists SG n⇒ S [r0] in G.

Induction hypothesis: Assume that Claim 5.3.2 holds for all n-limited derivations of length
m or less for some m ≥ 0.

Induction step: Consider (p0, S) n⇒m (o, y), where o ∈ W and y = x0A1x1 . . . Ahxh for
some x0, x1, . . . , xh ∈ T ∗ and A1, A2, . . . , Ah ∈ N , so that (o, y) n⇒ (q, x) [〈s〉]. For
〈s〉 : (o,Aj) → (q, v), v ∈ V +, is x of the form x = x0A1x1 . . . Aj−1xj−1vxjAj+1xj+1 . . . Ah

xh, 1 ≤ j ≤ n. Based on the induction hypothesis, there exists SG n⇒+ y n⇒ x [rs],
where (rs : Aj → v, σ(rs)), σ(rs) = {rk ∈ lab(PG) : 〈k〉 : (q, C)→ (t, c) ∈ P for some C ∈ N ,
c ∈ V + and t ∈W}.

By Claim 5.3.2 for h = 0, if (p0, S) n⇒z (q, x) in H, then SG n⇒+ x in G for some z ≥ 0,
q ∈W and x ∈ T ∗, so L(H) ⊆ L(G).

Claim 5.3.3. If SG n⇒m x0A1x1 . . . Ahxh in G, then (p0, S) n⇒∗ (q, x0A1x1 . . . Ahxh) in
H for some m ≥ 1, x0, x1, . . . , xh ∈ T ∗, A1, A2, . . . , Ah ∈ N and q ∈W .

This claim is established by induction on m.

Basis: Let m = 1. For SG n⇒ S [r0] in G, there exists (p0, S) n⇒0 (p0, S) in H.

Induction hypothesis: Assume that Claim 5.3.3 holds for all n-limited derivations of length
m or less for some m ≥ 1.

Induction step: Consider SG n⇒m y, where y = x0A1x1 . . . Ahxh for some x0, x1, . . . , xh ∈
T ∗ and A1, A2, . . . , Ah ∈ N , so that y n⇒ x [rk] for some rk ∈ lab(PG), 0 ≤ k ≤ |PG|. For
(rk : Aj → v, σ(r)), v ∈ V +, is x of the form x = x0A1x1 . . . Aj−1xj−1vxjAj+1xj+1 . . . Ah

xh, 1 ≤ j ≤ n. Based on the induction hypothesis, there exists (p0, S) n⇒∗ (q, y) and there
is a rule 〈k〉 : (q, Aj)→ (s, v) for some q, s ∈W , so that (q, y) n⇒ (s, x) [〈k〉].

By Claim 5.3.3 for h = 0, if SG n⇒z x in G, then (p0, S) n⇒∗ (q, x) in H for some z ≥ 1,
q ∈W and x ∈ T ∗, so L(G) ⊆ L(H).

As L(H) ⊆ L(G) and L(G) ⊆ L(H), L(H) = L(G). Thus, Lemma 5.3.1 holds.

21

Lemma 5.3.4. For all n ≥ 1, Ln-lim(PG) ⊆ Ln-lim(uSG).

Proof.

Construction. Let G = (N,T, P, S) be an n-limited programmed grammar. We construct
an n-limited unrestricted state grammar H = (N ∪ {SH}, T,W, PH , SH , 〈ρ〉) such that
L(G) = L(H), where SH /∈ N is a new nonterminal, ρ is a new symbol and PH and W are
constructed by performing the following steps:

1. For each (r : S → v, σ(r)) ∈ P , v ∈ V +, add (〈ρ〉, SH)→ (〈r〉, S) to PH , where 〈ρ〉 is
a new state in W .

2. For each (r : A → v, σ(r)) ∈ P , A ∈ N , v ∈ V +, if σ(r) 6= ∅, then for each s ∈ σ(r)
add (〈r〉, A)→ (〈s〉, v) to PH , where 〈r〉 and 〈s〉 are new states in W . Otherwise, add
(〈r〉, A)→ (〈φ〉, v) to PH , where 〈r〉 and 〈φ〉 are new states in W .

Basic idea. H simulates G’s n-limited derivations and instead of success fields in G’s
rules it uses states to regulate the derivation process. There is an injection from lab(P) to
W , because each rule label in lab(P) corresponds to a single state in H and no rule label
corresponds to states 〈ρ〉 and 〈φ〉.

More precisely, let x0A1x1 . . . Ahxh be a sentential form derived by G, where x0, x1, . . . , xh ∈
T ∗, A1, A2, . . . , Ah ∈ N and let (r : Aj → v, σ(r)), v ∈ V +, be a rule in P that is appli-
cable in the next step to Aj for 1 ≤ j ≤ n. Then, H’s new configuration is of the form
(〈r〉, x0A1x1 . . . Ahxh), which encodes the information about the next applicable rule label
in G in the state.

Claim 5.3.5. If S n ⇒m x0A1x1 . . . Ahxh [p1p2 . . . pm] (or [ε] if m = 0) in G, then
(〈ρ〉, SH) n⇒+ (〈s〉, x0A1x1 . . . Ahxh) in H, for m ≥ 0, x0, x1, . . . , xh ∈ T ∗, A1, A2, . . . , Ah ∈
N and p1, p2, . . . , pm ∈ lab(P). If m ≥ 1 and σ(pm) 6= ∅, then exists a rule (pm+1 : A →
v, σ(pm+1)) in P , A ∈ N , v ∈ V +, pm+1 ∈ σ(pm) and a rule (〈s〉, A) → (〈t〉, v) in PH ,
where s = pm+1 and 〈s〉, 〈t〉 ∈W .

This claim is established by induction on m.

Basis: Let m = 0. For S n⇒0 S in G there exists (〈ρ〉, SH) n⇒ (〈r〉, S) in H, where
(r : S → v, σ(r)) ∈ P , v ∈ V + and (〈ρ〉, SH)→ (〈r〉, S) ∈ PH .

Induction hypothesis: Assume that Claim 5.3.5 holds for all n-limited derivations of length
m or less for some m ≥ 0.

Induction step: Consider S n⇒m y [p1p2 . . . pm], where y = x0A1x1 . . . Ahxh, x0, x1, . . . , xh

∈ T ∗, A1, A2, . . . , Ah ∈ N , and p1, p2, . . . , pm, pm+1 ∈ lab(P), so that y n⇒ x [pm+1].
If m = 0, then pm+1 ∈ {p ∈ lab(P) : (p : S → u, σ(p)) ∈ P for some u ∈ V +}, oth-
erwise pm+1 ∈ σ(pm). For (pm+1 : Aj → v, σ(pm+1)), where v ∈ V +, is x in the form
x = x0A1x1 . . . Aj−1xj−1vxjAj+1 . . . Ahxh. Based on the induction hypothesis, there ex-
ists (〈ρ〉, SH) n⇒+ (〈pm+1〉, y) n⇒ (〈t〉, x), where (〈pm+1〉, Aj) → (〈t〉, v) ∈ PH for some
〈t〉 ∈W . If σ(pm+1) 6= ∅, then exists a rule pm+2 ∈ σ(pm+1), (pm+2 : B → u, σ(pm+2)) ∈ P ,
t = pm+1, and there is a rule (〈t〉, B)→ (〈r〉, u) in PH for some B ∈ N , 〈r〉 ∈W and u ∈ V +.
Otherwise, t = φ and there is no rule (〈φ〉, B)→ (〈r〉, u) in PH for any B ∈ N and u ∈ V +.

By Claim 5.3.5 for h = 0, if S n⇒z y in G, then (〈ρ〉, SH) n⇒+ (〈s〉, y) in H for some z ≥ 0,
〈s〉 ∈W and y ∈ T ∗, so L(G) ⊆ L(H).

22

Claim 5.3.6. If (〈ρ〉, SH) n⇒m (〈s〉, x0A1x1 . . . Ahxh) in H, then S n⇒∗ x0A1x1 . . . Ahxh

in G for some m ≥ 1, x0, x1, . . . , xh ∈ T ∗, A1, A2, . . . , Ah ∈ N and 〈s〉 ∈W .

This claim is established by induction on m.

Basis: Let m = 1. For (〈ρ〉, SH) n⇒ (〈r〉, S) [s] in H there exists S n⇒0 S in G, where
(r : S → v, σ(r)) ∈ P and s : (〈ρ〉, SH)→ (〈r〉, S) ∈ PH for some 〈r〉 ∈W and v ∈ V +.

Induction hypothesis: Assume that Claim 5.3.6 holds for all n-limited derivations of length
m or less for some m ≥ 1.

Induction step: Consider (〈ρ〉, SH) n⇒m (〈r〉, y), where 〈r〉 ∈ W , y = x0A1x1 . . . Ahxh

for some x0, x1, . . . , xh ∈ T ∗ and A1, A2, . . . , Ah ∈ N , so that (〈r〉, y) ⇒ (〈p〉, x) by some
(〈r〉, Aj)⇒ (〈p〉, v) ∈ PH , where x = x0A1x1 . . . Aj−1xj−1vxjAj+1xj+1 . . . Ah xh, 1 ≤ j ≤ n
and v ∈ V +. Based on the induction hypothesis, there exists S n⇒∗ x in G and some rule
(r : Aj → v, σ(r)) ∈ P such that x⇒ y [r].

By Claim 5.3.6 for h = 0, if (〈ρ〉, SH) n⇒z (〈s〉, y) in H, then S n⇒∗ y in G for some z ≥ 1,
〈s〉 ∈W and y ∈ T ∗, so L(H) ⊆ L(G).

As L(G) ⊆ L(H) and L(H) ⊆ L(G), L(G) = L(H). Thus, Lemma 5.3.4 holds.

Example 5.3.7. Let G = ({S,X,C}, {a, b, c}, P, S) be an n-limited programmed grammar,
where n = 2, with the following rules in P :

(r1 : S → XC, {r2, r4}),

(r2 : X → aXb, {r3}),

(r3 : C → cC, {r2, r4}),

(r4 : X → ab, {r5}),

(r5 : C → c, ∅).

The equivalent n-limited unrestricted state grammar H, where n = 2, would be H =
({S,X,C, SH}, {a, b, c}, {〈ρ〉, 〈r1〉, 〈r2〉, 〈r3〉, 〈r4〉, 〈r5〉, 〈φ〉}, PH , SH , 〈ρ〉), with the following
rules in PH :

1 : (〈ρ〉, SH)→ (〈r1〉, S),

2 : (〈r1〉, S)→ (〈r2〉, XC),

3 : (〈r1〉, S)→ (〈r4〉, XC),

4 : (〈r2〉, X)→ (〈r3〉, aXb),

5 : (〈r3〉, C)→ (〈r2〉, cC),

6 : (〈r3〉, C)→ (〈r4〉, cC),

7 : (〈r4〉, X)→ (〈r5〉, ab),

8 : (〈r5〉, C)→ (〈φ〉, c).

Generated language is L(G) = L(H) = {anbncn : n ≥ 1}.

Theorem 5.3.8. For all n ≥ 1, Ln-lim(PG) = Ln-lim(uSG).

Proof. The result directly follows from Lemmas 5.3.1 and 5.3.4.

23

5.3.2 Infinite Hieararchy of Language Families

This subsection establishes an infinite hierarchy of language families resulting from n-limited
programmed grammars.

Lemma 5.3.9. For all n ≥ 1, let G = (N,T,W,P, S, p0) be an n-limited state grammar.
If there is no more than one occurence of each nonterminal from N in every configuration
in each n-limited derivation step for each x ∈ L(G), then there is an n-limited unrestricted
state grammar H = (N,T,W,P, S, p0) such that L(G) = L(H).

Proof. According to our definitions, the only difference between an n-limited state grammar
and an n-limited unrestricted state grammar is the definition of ⇒. So, if there is no more
than one occurence of each nonterminal from N in every configuration in each n-limited
derivation step for each x ∈ L(G), then every rewritten nonterminal in a single n-limited
derivation step in H is also the leftmost occurence of such nonterminal in the corresponding
configuration, because this nonterminal occures at most once in each configuration.

Definition 5.3.10. For all n ≥ 1, let Ln be the subset of {a1, . . . , a4n−2}∗ defined by
Ln = {ak

1a
k
2 · · · ak

4n−2 : k ≥ 1} (see [7]).

Lemma 5.3.11. For all n ≥ 1, there is an n-limited unrestricted state grammar that
generates Ln.

Proof. Recall the n-limited state grammar Gn = (Vn − Σn,Σn,Kn, Pn, σ, p0) from the
proof of Theorem 4 in [7]. As this grammar generates Ln [7] and it satisfies the condi-
tion from Lemma 5.3.9, there is an n-limited unrestricted state grammar Hn = (Vn −
Σn,Σn,Kn, Pn, σ, p0) such that L(Gn) = L(Hn) = Ln.

Lemma 5.3.12. For all n ≥ 1, Ln-lim(uSG) ⊆ Ln-lim(SG).

Proof.

Construction. Let G = (NG, T,WG, PG, S, p0) be an n-limited unrestricted state gram-
mar, VG = NG ∪ T . We construct an n-limited state grammar H = (NH , T,WH , PH , S, p0)
such that L(G) = L(H), where initially NH = NG, WH = WG and PH = PG. If n ≥ 2, to
complete the construction, perform the following steps:

1. Denote all rules in PG by labels ri, i ∈ {1, 2, . . . , |PG|}.

2. For each rule ri : (p,A)→ (q, v) ∈ PG, p, q ∈WG, A ∈ NG and v ∈ V +
G , do:

For all j ∈ {1, 2, . . . , n− 1}, do:

(a) If j = 1, for all B ∈ NG add (p,B) → (−→p i,j , Bj) to PH , otherwise for all
B ∈ NG add (−→p i,j−1, B) → (−→p i,j , Bj) to PH , where −→p i,j is a new state in
WH and Bj is a new nonterminal in NH .

(b) Add (−→p i,j , A)→ (←−q i,j , v) to PH , where ←−q i,j is a new state in WH .
(c) If j = 1, for all B ∈ NG add (←−q i,j , Bj) → (q,B) to PH , otherwise for all

B ∈ NG add (←−q i,j , Bj)→ (←−q i,j−1, B) to PH .

24

Basic idea. For a rule ri : (p,A) → (q, v) ∈ PG, G can rewrite any occurence of A to
v within first n nonterminals in an n-limited derivation step. As H always rewrites the
leftmost occurence of A, when simulating G, it must be able to rewrite any occurence of A
to v within first n nonterminals, too. Clearly, by definition, there is no problem if n = 1,
because G will always rewrite the leftmost occurence of A.

So, assuming that n ≥ 2 and that G rewrites A to v by ri : (p,A)→ (q, v), H rewrites A to
v in a sequence of n-limited derivation steps, beginning by rewriting all nonterminals before
the A that was rewritten in G to their respective indexed versions by using rules introduced
in (a), then rewriting A to v by a rule introduced in (b) and finishing the simulation of that
n-limited derivation step in G by rewriting indexed nonterminals back to their respective
nonindexed versions by rules introduced in (c).

A state −→p i,k (←−q i,k) encodes that H is simulating a rule ri : (p,A) → (q, v) ∈ PG in G,
k nonterminals have been rewritten to their respective indexed versions in the current
configuration and A has not yet been (has been) rewritten to v, respectively.

Claim 5.3.13. If (p0, S) n⇒m (q, x0A1x1 . . . Ahxh) in G, then (p0, S) n⇒∗ (q, x0A1x1 . . .
Ahxh) in H for some m ≥ 0, x0, x1, . . . , xh ∈ T ∗, A1, A2, . . . , Ah ∈ NG and q ∈WG.

This claim is established by induction on m.

Basis: Let m = 0. For (p0, S) n⇒0 (p0, S) in G there exists (p0, S) n⇒0 (p0, S) in H.

Induction hypothesis: Assume that Claim 5.3.13 holds for all 0 ≤ m ≤ k, where k ≥ 0.

Induction step: Let (p0, S) n⇒k+1 (q, x) in G, where q ∈WG and x = x0A1x1 . . . Aj−1xj−1v
xjAj+1 . . . Ahxh for some x0, x1, . . . , xh ∈ T ∗, A1, A2, . . . , Ah ∈ NG, v ∈ VG and j ≤ n ≤ h.
Because k + 1 ≥ 1, express (p0, S) n⇒k+1 (q, x) as (p0, S) n⇒k (o, y) n⇒ (q, x) [ri], where
o ∈ WG, ri : (o,Aj) → (q, v) ∈ PG and y = x0A1x1 . . . Ahxh. By the induction hypothesis,
(p0, S) n⇒∗ (o, y) in H. As ri : (o,Aj) → (q, v) ∈ PG, if n = 1, then (p0, S) n⇒∗ (o, y) n⇒
(q, x) [ri] in H and the induction step is completed. Otherwise, H sequentially rewrites all
A1, A2, . . . , Aj−1 to A1

1, A
2
2, . . . , A

j−1
j−1 by (o,A1)→ (−→o i,1, A1

1), (−→o i,1, A2)→ (−→o i,2, A2
2), . . . ,

(−→o i,j−2, Aj−1) → (−→o i,j−1, Aj−1
j−1) ∈ PH (added in (a)). Then, H rewrites Aj to v by using

(−→o i,j−1, Aj)→ (←−q i,j−1, v) ∈ PH (added in (b)). To finish the simulation of (o, y) n⇒ (q, x)
[ri] in G, H sequentially rewrites all Aj−1

j−1, A
j−2
j−2, . . . , A

1
1 back to Aj−1, Aj−2, . . . , A1 by

applying a sequence of rules (←−q i,j−1, Aj−1
j−1) → (←−q i,j−2, Aj−1), . . . , (←−q i,1, A1

1) → (q, A1) ∈
PH (added in (c)), which completes the induction step.

By Claim 5.3.13 for h = 0, if (p0, S) n⇒z (q, x) in G, then (p0, S) n⇒∗ (q, x) in H for some
z ≥ 0, q ∈WG and x ∈ T ∗, so L(G) ⊆ L(H).

Claim 5.3.14. Let (p0, S) n⇒m (q, x0A1x1 . . . Ahxh) in H for some m ≥ 0, x0, x1, . . . , xh ∈
T ∗, A1, A2, . . . , Ah ∈ NH and q ∈ WH . If q ∈ WG and A1, A2, . . . , Ah ∈ NG, then
(p0, S) n⇒∗ (q, x0A1x1 . . . Ahxh) in G, otherwise (q, x0A1x1 . . . Ahxh) n⇒+ (t, x0A

′
1x1 . . . A

′
h

xh) in H and (p0, S) n⇒∗ (t, x0A1x1 . . . Ahxh) in G, where A
′
1, A

′
2, . . . , A

′
h ∈ NG and

t ∈WG.

This claim is established by induction on m.

Basis: Let m = 0 and (p0, S) n⇒0 (p0, S) in H. As p0 ∈ WG, S ∈ NG and (p0, S) n⇒0

(p0, S) in G, the basis holds.

25

Induction hypothesis: Assume that Claim 5.3.14 holds for all 0 ≤ m ≤ k, where k ≥ 0.

Induction step: Let (p0, S) n⇒k+1 (q, x) in H, where q ∈WH and x = x0A1x1 . . . Aj−1xj−1

vAj+1 . . . Ahxh for some x0, x1, . . . , xh ∈ T ∗, A1, A2, . . . , Ah ∈ NH , v ∈ (NH ∪ T)+ and
j ≤ n ≤ h. Because k + 1 ≥ 1, express (p0, S) n⇒k+1 (q, x) as (p0, S) n⇒k (o, y) n⇒ (q, x)
[s], where o ∈ WH , s : (o,Aj) → (q, v) ∈ PH and y = x0A1x1 . . . Ahxh. By the induction
hypothesis, o ∈ WG and A1, A2, . . . , Ah ∈ NG. If q ∈ WG and v ∈ V +

G , then (p0, S) n⇒∗
(o, y) n⇒ (q, x) in G and the induction step is completed. Otherwise, by using rule s in
the last step in H, H starts a simulation of some rule (o,Aj) → (t, v), where t ∈ WG and
v ∈ V +

G , so q = −→o i,1 and v = A1
1 for some 1 ≤ i ≤ |PG|, so that (ri : Aj → v, σ(ri)) ∈ PG.

To complete the simulation of (o,Aj) → (t, v), H sequentially rewrites all A2, . . . , Aj−1 to
A2

2, . . . , A
j−1
j−1 by (−→o i,1, A2)→ (−→o i,2, A2

2), . . . , (−→o i,j−2, Aj−1)→ (−→o i,j−1, Aj−1
j−1) ∈ PH (added

in (a)). Then, H rewrites Aj to v by using (−→o i,j−1, Aj) → (
←−
t i,j−1, v) ∈ PH (added in

(b)). Finally, H sequentially rewrites all Aj−1
j−1, A

j−2
j−2, . . . , A

1
1 back to Aj−1, Aj−2, . . . , A1 by

applying a sequence of rules (
←−
t i,j−1, Aj−1

j−1) → (
←−
t i,j−2, Aj−1), . . . , (

←−
t i,1, A1

1) → (t, A1) ∈
PH (added in (c)). Then, (o,Aj) n⇒ (t, v) in G, which completes the induction step.

By Claim 5.3.14 for h = 0, let (p0, S) n⇒z (q, x) in H for some z ≥ 0, q ∈ WH and
x ∈ T ∗. If q ∈ WG, then (p0, S) n⇒∗ (q, x) in G, otherwise (q, x) n⇒+ (r, x) in H and
(p0, S) n⇒∗ (r, x) in G for some r ∈WG, so L(H) ⊆ L(G).

As L(G) ⊆ L(H) and L(H) ⊆ L(G), L(G) = L(H). Thus, Lemma 5.3.12 holds.

Lemma 5.3.15. For all n ≥ 2, Ln is not in L(n−1)-lim(uSG).

Proof. Recall that for all n ≥ 2, Ln is not in L(n−1)-lim(SG) (see Theorem 5 in [7]) and for
all m ≥ 1, Lm-lim(uSG) ⊆ Lm-lim(SG) by Lemma 5.3.12. Thus, this lemma holds.

The following result is the most important result of this work, because it says that n-
limited programmed grammars are less powerful than (n+1)-limited programmed grammars
and thus the left restriction range affects the generative power of n-limited programmed
grammars.

Theorem 5.3.16. For all n ≥ 1, Ln-lim(PG) ⊂ L(n+1)-lim(PG).

Proof. This result follows from Lemma 5.3.15 and Theorem 5.3.8.

5.4 Significance for Syntactical Analysis

As far as I was able to determine, there has been no systematic research in the direction
of parsing methods based on programmed grammars, or based on regulated grammars in
general. Current compilers use parsers based on context-free grammars, because there
is a well-researched underlying theory (see [13]), which includes top-down parsing based
on LL(k) grammars and pushdown automata (recursive decent, predictive or table-based
parsers) and botom-up parsing based on LR(k) grammars and extended pushdown au-
tomata (SLR or LALR parsers).

However, these models can be found insufficient when one need to parse a language which
cannot be defined by a context-free grammar. In such situations, programmed grammars

26

can be considered as a suitable model for description and parsing of such languages. In [8]
and [9], use of regulated grammars (especially programmed grammars) in programming lan-
guages was studied and discussed. In [5], a sketch of a possible parser based on programmed
grammars was described. However, there is no complete and usable parsing theory based
on programmed grammars by knowledge, except that A. Rußmann in [18] introduced a
dynamic LL(k) parser based on so-called dynamic context-free grammars and managed to
characterize LR(1) grammars by a grammar model involving leftmost derivations which can
be easily seen as the deterministic version of regulated grammars with leftmost derivations
[4].

The main result presented in this work is significant for syntactical analysis when study-
ing or writing a parser for some noncontext-free language that is based on programmed
grammars. One surely would like to have the parser deterministic – that involves use only
of leftmost derivations. However, Theorem 4.1.3 states that this is not possible, because
we loose the generative power of programmed grammars. So, by using the result stated
by Theorem 5.3.16, one can use n-leftmost derivations (where n is high enough to define
the language by an n-limited programmed grammar) instead of leftmost derivations, which
can be more efficient than using universal (unrestricted) derivations, so at least preserving
“some” determinism.

27

Chapter 6

Conclusion

Canonical derivations in programmed grammars (with focus on leftmost derivations) and
left restriction range were studied in this work. It was shown that if we introduce n-limited
derivations in programmed grammars as they were defined for state grammars, we get
an infinite hierarchy of language families resulting from n-limited programmed grammars
(Theorem 5.3.8), so the left restriction range affects the generative power of n-limited
programmed grammars. In order to proof this hierarchy, a modification of a state grammar,
called unrestricted state grammar, was introduced and it was shown that the family of
languages generated by n-limited programmed grammars is equivalent to the family of
languages generated by n-limited unrestricted state grammars (Theorem 5.3.8).

The main contribution of this work is in the significance for syntactical analysis, as discussed
in Section 5.4 of Chapter 5. The main result gives the possibility to define a noncontext-
free language by an n-limited programmed grammar that can be parsed using n-leftmost
derivations where n ≥ 2 is high enough to define the language by an n-limited programmed
grammar, while it would be impossible to parse it using strict leftmost derivations (n = 1).

6.1 Open Problems

There are still some open questions related to this work. Future project research could be
focused on solving these open problems.

• As stated in Section 3.4 in Chapter 3, it is not yet known if the inclusion between
L (PG) ⊆ L (PG, ε) is proper or these two families are equivalent. If they are not
equivalent, is there also an inifite hierarchy of language families resulting from n-
limited programmed grammars with ε-rules?

• Lemma 5.3.12 states that for all n ≥ 1, Ln-lim(uSG) ⊆ Ln-lim(SG). Does the
opposite inclusion (Ln-lim(SG) ⊆ Ln-lim(uSG)) hold? If so, then the family of
languages generated by n-limited unrestricted state grammars is equivalent to the
family of languages generated by n-limited state grammars.

28

Bibliography

[1] S. Abraham. Some questions of language theory. In Proceedings of the 1965
conference on Computational linguistics, pages 1–11, Morristown, NJ, USA, 1965.
Association for Computational Linguistics.

[2] N. Chomsky. Three models for the description of language. IRE Transactions on
Information Theory, 2(3):113–124, 1956.

[3] J. Dassow. Grammars with regulated rewriting [online]. Lecture in the 5th PhD
Program Formal Languages and Applications. Otto-von-Guericke-Universität,
Magdeburg, 2003. Available on URL:
http://theo.cs.uni-magdeburg.de/dassow/fphdpro.pdf (April 2008).

[4] J. Dassow, H. Fernau, and G. Pãun. On the leftmost derivation in matrix grammars.
In International Journal of Foundations of Computer Science, pages 61–80, 1997.

[5] J. Dassow and G. Păun. Regulated Rewriting in Formal Language Theory. Springer,
New York, 1989. ISBN 38751-414-7.

[6] H. Fernau. Regulated grammars under leftmost derivation. Grammars, 3(1):37–62,
1999.

[7] T. Kasai. An hierarchy between context-free and context-sensitive languages. Journal
of Computer and System Sciences, 4:492–508, 1970.

[8] M. Kot. Regulated grammars. Master’s thesis, VSB – Technical University of
Ostrava, Faculty of Electrical Engineering and Computer Science, 2002.

[9] Z. Křivka. Use of regulated grammars in programming languages [online]. Project for
the Programming Language Theory. Brno, University of Technology, Faculty of
Information Technology, 2002. Available on URL:
http://www.fit.vutbr.cz/study/courses/TJD/public/0506TJD-Krivka.pdf (April
2008).

[10] P. Linz. An Introduction to Formal Languages and Automata, 3rd ed. Jones and
Bartlett Publishers, 2000. ISBN 0-7637-1422-4.

[11] A. Meduna. Modern theoretical computer science [online]. Lectures in the Modern
Theoretical Computer Science. Brno, University of Technology, Faculty of
Information Technology, 2007. Available on URL:
http://www.fit.vutbr.cz/ meduna/work/doku.php?id=lectures:phd:tid:tid (April
2008).

29

[12] A. Meduna. Automata and Languages: Theory and Applications. Springer, London,
2000. ISBN 1-85233-074-0.

[13] A. Meduna. Elements of Compiler Design. Taylor and Francis Informa plc, New
York, 2008. ISBN 978-1-4200-6323-3.

[14] A. Meduna and M. Švec. Grammars with Context Conditions and Their
Applications. Wiley, Hoboken, New Jersey, 2005. ISBN 0-471-71831-9.

[15] D. J. Rosenkrantz. Programmed grammar - A New Device for Generating Formal
Languages. PhD thesis, Columbia University, New York, 1967.

[16] D. J. Rosenkrantz. Programmed grammars and classes of formal languages. Journal
of the ACM, 16(1):107–131, 1969.

[17] G. Rozenberg and A. Salomaa. Handbook of Formal Languages: Word, Language,
Grammar, Volume 1. Springer, Berlin, 1997. ISBN 3-540-60420-0.

[18] A. Rußmann. Dynamic ll(k) parsing. Acta Informatica, 34(4):267–289, 1997.

[19] A. P. J. van der Walt. Random context grammars. In Proceedings of Symposium on
Formal Languages, 1970.

[20] S. J. Whittaker. Finding grammars that are more than context-free, but not fully
context-sensitive. Technical Report 2006-514, School of Computing, Queen’s
University, Canada, 2006.

30

	Introduction
	Preliminaries
	Mathematical Background
	Sets
	Relations and Functions

	Alphabet, Words and Languages
	Grammars and Language Families
	Phrase-structure Grammar (Type 0)
	Context-sensitive Grammar (Type 1)
	Context-free Grammar (Type 2)
	Language Families and Chomsky Classification

	Programmed Grammars
	Programmed Grammar
	Programmed Grammar With -rules
	Programmed Grammar With Appearance Checking
	Generative Power

	Canonical Derivations
	Leftmost Derivations of Type 1
	Leftmost Derivations of Type 2
	Leftmost Derivations of Type 3

	Left Restriction Range and Its Consequences
	State Grammars
	State Grammar
	Unrestricted State Grammar

	n-limited Derivations
	Results
	Equivalence of Ln-lim(PG) and Ln-lim(uSG)
	Infinite Hieararchy of Language Families

	Significance for Syntactical Analysis

	Conclusion
	Open Problems

