Thesis Details
Anomaly Detection in Generated Incident Ticket Volumes
        Bachelor's Thesis
        Student: Šurina Timotej
        Academic Year: 2018/2019
        Supervisor: Trchalík Roman, Mgr., Ph.D.
    
    
                Czech title
            
        
                Detekce anomálií v množství generovaných záznamů o incidentech
            
        
                Language
            
        
                English
            
        
                Abstract
            
        This bachelor thesis deals with the issue of time series anomaly detection. It presents methods STL decomposition, ARIMA, Exponential Smoothing and LSTM Networks. The aim is to use these methods to create an algorithm that can analyze the trend in a volume of generated incident tickets and detect anomalies form the trend. The solution was created based on a dataset provided by firm AT&T Global Network Services Czech Republic s.r.o. and implemented in the Python programming language.
                Keywords
            
        Anomaly, anomaly detection, time series, machine learning, statistical methods, STL decomposition, ARIMA, Exponential Smoothing, LSTM Networks, ticket
                Department
            
        
                Degree Programme
            
        
                Information Technology            
        
                Files
            
        
                Status
            
        
                defended, grade E
            
        
                Date
            
        
                10 June 2019
            
        
                Reviewer
            
        
                Committee
            
        
                Smrž Pavel, doc. RNDr., Ph.D. (DCGM FIT BUT), předseda
Fučík Otto, doc. Dr. Ing. (DCSY FIT BUT), člen
Holík Lukáš, doc. Mgr., Ph.D. (DITS FIT BUT), člen
Szőke Igor, Ing., Ph.D. (DCGM FIT BUT), člen
Veselý Vladimír, Ing., Ph.D. (DIFS FIT BUT), člen
        Fučík Otto, doc. Dr. Ing. (DCSY FIT BUT), člen
Holík Lukáš, doc. Mgr., Ph.D. (DITS FIT BUT), člen
Szőke Igor, Ing., Ph.D. (DCGM FIT BUT), člen
Veselý Vladimír, Ing., Ph.D. (DIFS FIT BUT), člen
                Citation
            
        
                ŠURINA, Timotej. Anomaly Detection in Generated Incident Ticket Volumes. Brno, 2019. Bachelor's Thesis. Brno University of Technology, Faculty of Information Technology. 2019-06-10. Supervised by Trchalík Roman. Available from: https://www.fit.vut.cz/study/thesis/21169/
            
        
                BibTeX
            
        @bachelorsthesis{FITBT21169,
    author = "Timotej \v{S}urina",
    type = "Bachelor's thesis",
    title = "Anomaly Detection in Generated Incident Ticket Volumes",
    school = "Brno University of Technology, Faculty of Information Technology",
    year = 2019,
    location = "Brno, CZ",
    language = "english",
    url = "https://www.fit.vut.cz/study/thesis/21169/"
}